BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 22254663)

  • 1. A framework for the online analysis of multi-electrode gastric slow wave recordings.
    Bull SH; O'Grady G; Cheng LK; Pullan AJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1741-4. PubMed ID: 22254663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved signal processing techniques for the analysis of high resolution serosal slow wave activity in the stomach.
    Paskaranandavadivel N; Cheng LK; Du P; O'Grady G; Pullan AJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1737-40. PubMed ID: 22254662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Falling-edge, variable threshold (FEVT) method for the automated detection of gastric slow wave events in high-resolution serosal electrode recordings.
    Erickson JC; O'Grady G; Du P; Obioha C; Qiao W; Richards WO; Bradshaw LA; Pullan AJ; Cheng LK
    Ann Biomed Eng; 2010 Apr; 38(4):1511-29. PubMed ID: 20024624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-Delay Mapping of High-Resolution Gastric Slow-Wave Activity.
    Paskaranandavadivel N; OGrady G; Cheng LK
    IEEE Trans Biomed Eng; 2017 Jan; 64(1):166-172. PubMed ID: 27071158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated gastric slow wave cycle partitioning and visualization for high-resolution activation time maps.
    Erickson JC; O'Grady G; Du P; Egbuji JU; Pullan AJ; Cheng LK
    Ann Biomed Eng; 2011 Jan; 39(1):469-83. PubMed ID: 20927594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A real-time weighted-eigenvector MUSIC method for time-frequency analysis of electrogastrogram slow wave.
    Qin S; Miao L; Xi N; Wang Y; Yang C
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():867-70. PubMed ID: 21097197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Signal reconstruction of the slow wave and spike potential from electrogastrogram.
    Qin S; Ding W; Miao L; Xi N; Li H; Yang C
    Biomed Mater Eng; 2015; 26 Suppl 1():S1515-21. PubMed ID: 26405915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated detection of gastric slow wave events and estimation of propagation velocity vector fields from serosal high-resolution mapping.
    Du P; Qiao W; O'Grady G; Egbuji JU; Lammers W; Cheng LK; Pullan AJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2527-30. PubMed ID: 19964973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A system and method for online high-resolution mapping of gastric slow-wave activity.
    Bull SH; O'Grady G; Du P; Cheng LK
    IEEE Trans Biomed Eng; 2014 Nov; 61(11):2679-87. PubMed ID: 24860024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrogastrography: basic knowledge, recording, processing and its clinical applications.
    Chang FY
    J Gastroenterol Hepatol; 2005 Apr; 20(4):502-16. PubMed ID: 15836697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artifact reduction in magnetogastrography using fast independent component analysis.
    Irimia A; Bradshaw LA
    Physiol Meas; 2005 Dec; 26(6):1059-73. PubMed ID: 16311453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suppression of ventilation artifacts for gastrointestinal slow wave recordings.
    Paskaranandavadivel N; Alighaleh S; Peng Du ; O'Grady G; Cheng LK
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2769-2772. PubMed ID: 29060472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The noise influence on determination dominant frequencies of EGG signal.
    Komorowski D; Pietraszek S
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():392-5. PubMed ID: 19963964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extending the automated gastrointestinal analysis pipeline: Removal of invalid slow wave marks in gastric serosal recordings.
    Paskaranandavadivel N; Du P; Erickson J; O'Grady G; Cheng LK
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():1938-41. PubMed ID: 26736663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstruction of multiple gastric electrical wave fronts using potential based inverse methods.
    Kim JH; Pullan AJ; Cheng LK
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1355-8. PubMed ID: 22254568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Possibilities of the non-invasive electrogastrography.
    Atanassova E; Daskalov I
    Acta Physiol Pharmacol Bulg; 1995; 21(4):105-11. PubMed ID: 8830883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated classification of spatiotemporal characteristics of gastric slow wave propagation.
    Paskaranandavadivel N; Gao J; Du P; O'Grady G; Cheng LK
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():7342-5. PubMed ID: 24111441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localized gastric distension disrupts slow-wave entrainment leading to temporary ectopic propagation: a high-resolution electrical mapping study.
    Chan CA; Aghababaie Z; Paskaranandavadivel N; Avci R; Cheng LK; Angeli-Gordon TR
    Am J Physiol Gastrointest Liver Physiol; 2021 Dec; 321(6):G656-G667. PubMed ID: 34612062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved Visualization of Gastrointestinal Slow Wave Propagation Using a Novel Wavefront-Orientation Interpolation Technique.
    Mayne TP; Paskaranandavadivel N; Erickson JC; OGrady G; Cheng LK; Angeli TR
    IEEE Trans Biomed Eng; 2018 Feb; 65(2):319-326. PubMed ID: 29364117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iterative Covariance-Based Removal of Time-Synchronous Artifacts: Application to Gastrointestinal Electrical Recordings.
    Erickson JC; Putney J; Hilbert D; Paskaranandavadivel N; Cheng LK; O'Grady G; Angeli TR
    IEEE Trans Biomed Eng; 2016 Nov; 63(11):2262-2272. PubMed ID: 26829772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.