These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 22254663)

  • 21. Multiscale modelling of human gastric electric activity: can the electrogastrogram detect functional electrical uncoupling?
    Buist ML; Cheng LK; Sanders KM; Pullan AJ
    Exp Physiol; 2006 Mar; 91(2):383-90. PubMed ID: 16407476
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Detection of the Recovery Phase of in vivo gastric slow wave recordings.
    Paskaranandavadivel N; Pan X; Du P; O'Grady G; Cheng LK
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6094-7. PubMed ID: 26737682
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adaptive independent component analysis of multichannel electrogastrograms.
    Liang H
    Med Eng Phys; 2001 Mar; 23(2):91-7. PubMed ID: 11413061
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Filtering noise for synchronised activity in multi-trial electrophysiology data using Wiener and Kalman filters.
    Zhan Y; Guo S; Kendrick KM; Feng J
    Biosystems; 2009 Apr; 96(1):1-13. PubMed ID: 19084574
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mapping small intestine bioelectrical activity using high-resolution printed-circuit-board electrodes.
    Angeli TR; O'Grady G; Erickson JC; Du P; Paskaranandavadivel N; Bissett IP; Cheng LK; Pullan AJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4951-4. PubMed ID: 22255449
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of Electrode Diameter and Contact Material on Signal Morphology of Gastric Bioelectrical Slow Wave Recordings.
    Kamat AA; Paskaranandavadivel N; Alighaleh S; Cheng LK; Angeli TR
    Ann Biomed Eng; 2020 Apr; 48(4):1407-1418. PubMed ID: 31980997
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Trans-cutaneous electrogastrographic study of gastric myoelectric activity in transposed intrathoracic stomach after esophagectomy.
    Wong SK; Chiu PW; Wu JC; Sung JJ; Ng EK
    Dis Esophagus; 2007; 20(1):69-74. PubMed ID: 17227314
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Deep Convolutional Neural Network Approach to Classify Normal and Abnormal Gastric Slow Wave Initiation From the High Resolution Electrogastrogram.
    Agrusa AS; Gharibans AA; Allegra AA; Kunkel DC; Coleman TP
    IEEE Trans Biomed Eng; 2020 Mar; 67(3):854-867. PubMed ID: 31199249
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stimulus artifact cancellation in the serosal recordings of gastric myoelectric activity using wavelet transform.
    Liang H; Lin Z
    IEEE Trans Biomed Eng; 2002 Jul; 49(7):681-8. PubMed ID: 12083302
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chaotic behavior of gastric migrating myoelectrical complex.
    Wang ZS; He Z; Chen JD
    IEEE Trans Biomed Eng; 2004 Aug; 51(8):1401-6. PubMed ID: 15311825
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-resolution electrical mapping of porcine gastric slow-wave propagation from the mucosal surface.
    Angeli TR; Du P; Paskaranandavadivel N; Sathar S; Hall A; Asirvatham SJ; Farrugia G; Windsor JA; Cheng LK; O'Grady G
    Neurogastroenterol Motil; 2017 May; 29(5):. PubMed ID: 28035728
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel retractable laparoscopic device for mapping gastrointestinal slow wave propagation patterns.
    Berry R; Paskaranandavadivel N; Du P; Trew ML; O'Grady G; Windsor JA; Cheng LK
    Surg Endosc; 2017 Jan; 31(1):477-486. PubMed ID: 27129554
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Real time ECG artifact removal for myoelectric prosthesis control.
    Zhou P; Lock B; Kuiken TA
    Physiol Meas; 2007 Apr; 28(4):397-413. PubMed ID: 17395995
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Basic aspects concerning the event-synchronous interference canceller.
    Ungureanu M; Wolf WM
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2240-7. PubMed ID: 17073329
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Filtering the surface EMG signal: Movement artifact and baseline noise contamination.
    De Luca CJ; Gilmore LD; Kuznetsov M; Roy SH
    J Biomech; 2010 May; 43(8):1573-9. PubMed ID: 20206934
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The gastrointestinal electrical mapping suite (GEMS): software for analyzing and visualizing high-resolution (multi-electrode) recordings in spatiotemporal detail.
    Yassi R; O'Grady G; Paskaranandavadivel N; Du P; Angeli TR; Pullan AJ; Cheng LK; Erickson JC
    BMC Gastroenterol; 2012 Jun; 12():60. PubMed ID: 22672254
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Study on the removal method of electrogastrogram baseline wander based on wavelet transformation].
    Ding W; Qin S; Miao L; Xi N; Li H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Dec; 29(6):1189-92, 1196. PubMed ID: 23469554
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessment of slow wave propagation in multichannel electrogastrography by using noise-assisted multivariate empirical mode decomposition and cross-covariance analysis.
    Mika B; Komorowski D; Tkacz E
    Comput Biol Med; 2018 Sep; 100():305-315. PubMed ID: 29397919
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A wavelet-based adaptive filter for removing ECG interference in EMGdi signals.
    Zhan C; Yeung LF; Yang Z
    J Electromyogr Kinesiol; 2010 Jun; 20(3):542-9. PubMed ID: 19692270
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-resolution mapping of gastric slow-wave recovery profiles: biophysical model, methodology, and demonstration of applications.
    Paskaranandavadivel N; Cheng LK; Du P; Rogers JM; O'Grady G
    Am J Physiol Gastrointest Liver Physiol; 2017 Sep; 313(3):G265-G276. PubMed ID: 28546283
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.