These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 22254663)

  • 41. Changes in gastric myoelectric activity during space flight.
    Harm DL; Sandoz GR; Stern RM
    Dig Dis Sci; 2002 Aug; 47(8):1737-45. PubMed ID: 12184524
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Application of Empirical Mode Decomposition Combined With Notch Filtering for Interpretation of Surface Electromyograms During Functional Electrical Stimulation.
    Pilkar R; Yarossi M; Ramanujam A; Rajagopalan V; Bayram MB; Mitchell M; Canton S; Forrest G
    IEEE Trans Neural Syst Rehabil Eng; 2017 Aug; 25(8):1268-1277. PubMed ID: 27834646
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Identification of the slow wave of bowel myoelectrical surface recording by empirical mode decomposition.
    Ye Y; Garcia-Casado J; Martinez-de-Juan JL; Guardiola JL; Ponce JL
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():6165-8. PubMed ID: 17945942
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A simple method to remove ECG artifacts from trunk muscle EMG signals.
    Hof AL
    J Electromyogr Kinesiol; 2009 Dec; 19(6):e554-5. PubMed ID: 19121951
    [No Abstract]   [Full Text] [Related]  

  • 45. Biomagnetic signatures of uncoupled gastric musculature.
    Bradshaw LA; Irimia A; Sims JA; Richards WO
    Neurogastroenterol Motil; 2009 Jul; 21(7):778-e50. PubMed ID: 19222760
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Multi-channel wireless mapping of gastrointestinal serosal slow wave propagation.
    Paskaranandavadivel N; Wang R; Sathar S; O'Grady G; Cheng LK; Farajidavar A
    Neurogastroenterol Motil; 2015 Apr; 27(4):580-5. PubMed ID: 25599978
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The simultaneous recording and analysis both EGG and HRV signals.
    Pietraszek S; Komorowski D
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():396-9. PubMed ID: 19963965
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Circumferential and functional re-entry of in vivo slow-wave activity in the porcine small intestine.
    Angeli TR; O'Grady G; Du P; Paskaranandavadivel N; Pullan AJ; Bissett IP; Cheng LK
    Neurogastroenterol Motil; 2013 May; 25(5):e304-14. PubMed ID: 23489929
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Relation between slow-wave frequency and spiking activity during the migrating myoelectric complex in dogs.
    Janssens W; Vandenbogaerde H; Caenepeel P; Janssens J; Vantrappen G
    Pflugers Arch; 1992 Aug; 421(5):492-6. PubMed ID: 1461717
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Improved Prosthetic Control Based on Myoelectric Pattern Recognition via Wavelet-Based De-Noising.
    Maier J; Naber A; Ortiz-Catalan M
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):506-514. PubMed ID: 29432116
    [TBL] [Abstract][Full Text] [Related]  

  • 51. High-resolution mapping of in vivo gastrointestinal slow wave activity using flexible printed circuit board electrodes: methodology and validation.
    Du P; O'Grady G; Egbuji JU; Lammers WJ; Budgett D; Nielsen P; Windsor JA; Pullan AJ; Cheng LK
    Ann Biomed Eng; 2009 Apr; 37(4):839-46. PubMed ID: 19224368
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Robust time delay estimation of bioelectric signals using least absolute deviation neural network.
    Wang Z; He Z; Chen JD
    IEEE Trans Biomed Eng; 2005 Mar; 52(3):454-62. PubMed ID: 15759575
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhancement of laplacian EEnG from humans by means of an EMD-based method.
    Garcia-Casado J; Ye-Lin Y; Prats-Boluda G; Guimera J; Alberola J
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():943-6. PubMed ID: 21096779
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Classifier of intestinal contractile activity degree based on internal electroenterogram recording.
    Guimera-Tomas J; Ye-Lin Y; Garcia-Casado J; Prats-Boluda G
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():622-5. PubMed ID: 21096770
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Empirical Mode Decomposition for slow wave extraction from electrogastrographical signals.
    Mika B; Komorowski D; Tkacz E
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():4138-41. PubMed ID: 26737205
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Correlation between slow-wave myoelectric signals and mechanical contractions in the gastrointestinal tract: Advanced electromyographic method in rats.
    Szucs KF; Nagy A; Grosz G; Tiszai Z; Gaspar R
    J Pharmacol Toxicol Methods; 2016; 82():37-44. PubMed ID: 27475721
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Gastric myoelectric activity in patients with end-stage liver disease.
    Caras SD; Dickson RC; Lin Z; Ishitani MB; Caldwell SH; Chen JD
    Scand J Gastroenterol; 1999 Sep; 34(9):883-8. PubMed ID: 10522606
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electrogastrography: the study of gastric myoelectric activity. Possible insights into symptoms after restrictive bariatric surgery.
    Greenstein RJ; Sarr MG
    Obes Surg; 2003 Oct; 13(5):669-70. PubMed ID: 14627458
    [No Abstract]   [Full Text] [Related]  

  • 59. A Theoretical Analysis of Electrogastrography (EGG) Signatures Associated With Gastric Dysrhythmias.
    Calder S; O'Grady G; Cheng LK; Peng Du
    IEEE Trans Biomed Eng; 2017 Jul; 64(7):1592-1601. PubMed ID: 28113227
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Extracting signals robust to electrode number and shift for online simultaneous and proportional myoelectric control by factorization algorithms.
    Muceli S; Jiang N; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):623-33. PubMed ID: 24132017
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.