These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 22254677)

  • 1. Towards mental stress detection using wearable physiological sensors.
    Wijsman J; Grundlehner B; Liu H; Hermens H; Penders J
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1798-801. PubMed ID: 22254677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cluster-based analysis for personalized stress evaluation using physiological signals.
    Xu Q; Nwe TL; Guan C
    IEEE J Biomed Health Inform; 2015 Jan; 19(1):275-81. PubMed ID: 25561450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and evaluation of an ambulatory stress monitor based on wearable sensors.
    Choi J; Ahmed B; Gutierrez-Osuna R
    IEEE Trans Inf Technol Biomed; 2012 Mar; 16(2):279-86. PubMed ID: 21965215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wearable mental-health monitoring platform with independent component analysis and nonlinear chaotic analysis.
    Roh T; Bong K; Hong S; Cho H; Yoo HJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4541-4. PubMed ID: 23366938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of an Integrated System of Wearable Physiological Sensors for Stress Monitoring in Working Environments by Using Biological Markers.
    Betti S; Lova RM; Rovini E; Acerbi G; Santarelli L; Cabiati M; Del Ry S; Cavallo F
    IEEE Trans Biomed Eng; 2018 Aug; 65(8):1748-1758. PubMed ID: 29989933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stressing the accuracy: Wrist-worn wearable sensor validation over different conditions.
    Menghini L; Gianfranchi E; Cellini N; Patron E; Tagliabue M; Sarlo M
    Psychophysiology; 2019 Nov; 56(11):e13441. PubMed ID: 31332802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discriminating stress from cognitive load using a wearable EDA device.
    Setz C; Arnrich B; Schumm J; La Marca R; Tröster G; Ehlert U
    IEEE Trans Inf Technol Biomed; 2010 Mar; 14(2):410-7. PubMed ID: 19906598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of three methods for extracting respiration from the surface ECG: a review.
    Helfenbein E; Firoozabadi R; Chien S; Carlson E; Babaeizadeh S
    J Electrocardiol; 2014; 47(6):819-25. PubMed ID: 25194875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards an anxiety and stress recognition system for academic environments based on physiological features.
    Rodríguez-Arce J; Lara-Flores L; Portillo-Rodríguez O; Martínez-Méndez R
    Comput Methods Programs Biomed; 2020 Jul; 190():105408. PubMed ID: 32139112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. User stress detection in human-computer interactions.
    Zhai J; Barreto AB; Chin C; Li C
    Biomed Sci Instrum; 2005; 41():277-82. PubMed ID: 15850118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous Stress Detection Using Wearable Sensors in Real Life: Algorithmic Programming Contest Case Study.
    Can YS; Chalabianloo N; Ekiz D; Ersoy C
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31003456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Flexible and Wearable Human Stress Monitoring Patch.
    Yoon S; Sim JK; Cho YH
    Sci Rep; 2016 Mar; 6():23468. PubMed ID: 27004608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Objective stress monitoring based on wearable sensors in everyday settings.
    Han HJ; Labbaf S; Borelli JL; Dutt N; Rahmani AM
    J Med Eng Technol; 2020 May; 44(4):177-189. PubMed ID: 32589065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A low-power multi-modal body sensor network with application to epileptic seizure monitoring.
    Altini M; Del Din S; Patel S; Schachter S; Penders J; Bonato P
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1806-9. PubMed ID: 22254679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Objective detection of chronic stress using physiological parameters.
    Al Abdi RM; Alhitary AE; Abdul Hay EW; Al-Bashir AK
    Med Biol Eng Comput; 2018 Dec; 56(12):2273-2286. PubMed ID: 29911251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of the irregular pulse detection method in daily life using wearable photoplethysmographic sensor.
    Suzuki T; Kameyama K; Tamura T
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6080-3. PubMed ID: 19965254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Portable System for Real-Time Detection of Stress Level.
    Minguillon J; Perez E; Lopez-Gordo MA; Pelayo F; Sanchez-Carrion MJ
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30071643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stress Detection Using Wearable Physiological and Sociometric Sensors.
    Mozos OM; Sandulescu V; Andrews S; Ellis D; Bellotto N; Dobrescu R; Ferrandez JM
    Int J Neural Syst; 2017 Mar; 27(2):1650041. PubMed ID: 27440466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Objective evaluation of stress with the blind by the monitoring of autonomic nervous system activity.
    Massot B; Baltenneck N; Gehin C; Dittmar A; McAdams E
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1429-32. PubMed ID: 21096349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of subjects with higher self-reporting stress scores using heart rate variability patterns during the day.
    Kim D; Seo Y; Cho J; Cho CH
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():682-5. PubMed ID: 19162747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.