These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 22254724)

  • 1. On handling the layered structure of the skull in transcranial direct current stimulation models.
    Rampersad S; Stegeman D; Oostendorp T
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1989-92. PubMed ID: 22254724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-layer skull approximations perform well in transcranial direct current stimulation modeling.
    Rampersad SM; Stegeman DF; Oostendorp TF
    IEEE Trans Neural Syst Rehabil Eng; 2013 May; 21(3):346-53. PubMed ID: 22855232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcranial direct current stimulation: a computer-based human model study.
    Wagner T; Fregni F; Fecteau S; Grodzinsky A; Zahn M; Pascual-Leone A
    Neuroimage; 2007 Apr; 35(3):1113-24. PubMed ID: 17337213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcranial direct current stimulation in patients with skull defects and skull plates: high-resolution computational FEM study of factors altering cortical current flow.
    Datta A; Bikson M; Fregni F
    Neuroimage; 2010 Oct; 52(4):1268-78. PubMed ID: 20435146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling skull electrical properties.
    Sadleir RJ; Argibay A
    Ann Biomed Eng; 2007 Oct; 35(10):1699-712. PubMed ID: 17629793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Effect of a Transcranial Channel as a Skull/Brain Interface in High-Definition Transcranial Direct Current Stimulation-A Computational Study.
    Seo H; Kim HI; Jun SC
    Sci Rep; 2017 Jan; 7():40612. PubMed ID: 28084429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-layer-isotropic skull conductivity representation in the EEG forward problem using spherical head models.
    Cuartas-Morales E; Hallez H; Vanrumste B; Castellanos-Dominguez G
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4904-7. PubMed ID: 25571091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bio-heat transfer model of transcranial DC stimulation: comparison of conventional pad versus ring electrode.
    Datta A; Elwassif M; Bikson M
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():670-3. PubMed ID: 19964238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of tissue anisotropy on the radial and tangential components of the electric field in transcranial direct current stimulation.
    Metwally MK; Han SM; Kim TS
    Med Biol Eng Comput; 2015 Oct; 53(10):1085-101. PubMed ID: 25940845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Realistic simulation of transcranial direct current stimulation via 3-d high-resolution finite element analysis: Effect of tissue anisotropy.
    Suh HS; Kim SH; Lee WH; Kim TS
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():638-41. PubMed ID: 19964234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of anisotropic conductivity in the skull and white matter on transcranial direct current stimulation via an anatomically realistic finite element head model.
    Suh HS; Lee WH; Kim TS
    Phys Med Biol; 2012 Nov; 57(21):6961-80. PubMed ID: 23044667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of layered skull modeling on the frequency sensitivity and target accuracy in simulations of transcranial current stimulation.
    Wang H; Sun W; Zhang J; Yan Z; Wang C; Wang L; Liu T; Li C; Chen D; Shintaro F; Wu J; Yan T
    Hum Brain Mapp; 2021 Nov; 42(16):5345-5356. PubMed ID: 34390079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional head model simulation of transcranial magnetic stimulation.
    Wagner TA; Zahn M; Grodzinsky AJ; Pascual-Leone A
    IEEE Trans Biomed Eng; 2004 Sep; 51(9):1586-98. PubMed ID: 15376507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of tissue dielectric properties on the electric field induced in tDCS: a sensitivity analysis.
    Salvador R; Ramirez F; V'yacheslavovna M; Miranda PC
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():787-90. PubMed ID: 23366010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cranial electrotherapy stimulation and transcranial pulsed current stimulation: a computer based high-resolution modeling study.
    Datta A; Dmochowski JP; Guleyupoglu B; Bikson M; Fregni F
    Neuroimage; 2013 Jan; 65():280-7. PubMed ID: 23041337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dielectric properties of biological tissue: variation with age.
    Gabriel C
    Bioelectromagnetics; 2005; Suppl 7():S12-8. PubMed ID: 16142779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of the different winding methods of coil on electromagnetic field during transcranial magnetic stimulation.
    Yang S; Xu G; Wang L; Zhang X
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4270-3. PubMed ID: 19163656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional distribution of the electric field induced in the brain by transcranial magnetic stimulation using figure-8 and deep H-coils.
    Roth Y; Amir A; Levkovitz Y; Zangen A
    J Clin Neurophysiol; 2007 Feb; 24(1):31-8. PubMed ID: 17277575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational models of transcranial direct current stimulation.
    Bikson M; Rahman A; Datta A
    Clin EEG Neurosci; 2012 Jul; 43(3):176-83. PubMed ID: 22956646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A numerical study of transcranial focused ultrasound beam propagation at low frequency.
    Yin X; Hynynen K
    Phys Med Biol; 2005 Apr; 50(8):1821-36. PubMed ID: 15815098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.