These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 22254735)
1. Analysis of complexity based EEG features for the diagnosis of Alzheimer's disease. Staudinger T; Polikar R Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2033-6. PubMed ID: 22254735 [TBL] [Abstract][Full Text] [Related]
2. Application and comparison of classification algorithms for recognition of Alzheimer's disease in electrical brain activity (EEG). Lehmann C; Koenig T; Jelic V; Prichep L; John RE; Wahlund LO; Dodge Y; Dierks T J Neurosci Methods; 2007 Apr; 161(2):342-50. PubMed ID: 17156848 [TBL] [Abstract][Full Text] [Related]
3. Analysis of EEG background activity in Alzheimer's disease patients with Lempel-Ziv complexity and central tendency measure. Abásolo D; Hornero R; Gómez C; García M; López M Med Eng Phys; 2006 May; 28(4):315-22. PubMed ID: 16122963 [TBL] [Abstract][Full Text] [Related]
4. Analysis of MEG recordings from Alzheimer's disease patients with sample and multiscale entropies. Gómez C; Hornero R; Abásolo D; Fernández A; Escudero J Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6184-7. PubMed ID: 18003433 [TBL] [Abstract][Full Text] [Related]
5. Diagnosis of Alzheimer's disease from EEG by means of synchrony measures in optimized frequency bands. Gallego-Jutglà E; Elgendi M; Vialatte F; Solé-Casals J; Cichocki A; Latchoumane C; Jeong J; Dauwels J Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4266-70. PubMed ID: 23366870 [TBL] [Abstract][Full Text] [Related]
6. Entropy analysis of the EEG background activity in Alzheimer's disease patients. Abásolo D; Hornero R; Espino P; Alvarez D; Poza J Physiol Meas; 2006 Mar; 27(3):241-53. PubMed ID: 16462011 [TBL] [Abstract][Full Text] [Related]
7. A hybrid feature selection approach for the early diagnosis of Alzheimer's disease. Gallego-Jutglà E; Solé-Casals J; Vialatte FB; Elgendi M; Cichocki A; Dauwels J J Neural Eng; 2015 Feb; 12(1):016018. PubMed ID: 25605667 [TBL] [Abstract][Full Text] [Related]
8. Analysis of spontaneous MEG activity in patients with Alzheimer's disease using spectral entropies. Poza J; Hornero R; Abásolo D; Fernández A; Escudero J Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6180-3. PubMed ID: 18003432 [TBL] [Abstract][Full Text] [Related]
9. Study on a quantitative electroencephalography power spectrum typical of Chinese Han Alzheimer's disease patients by using wavelet transforms. Wan B; Ming D; Fu X; Yang C; Qi H; Chen B J Neural Eng; 2006 Mar; 3(1):71-7. PubMed ID: 16510944 [TBL] [Abstract][Full Text] [Related]
10. Magnetoencephalogram blind source separation and component selection procedure to improve the diagnosis of Alzheimer's disease patients. Escudero J; Hornero R; Abásolo D; Fernández A; Poza J Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5437-40. PubMed ID: 18003241 [TBL] [Abstract][Full Text] [Related]
11. Multiclass support vector machines for EEG-signals classification. Güler I; Ubeyli ED IEEE Trans Inf Technol Biomed; 2007 Mar; 11(2):117-26. PubMed ID: 17390982 [TBL] [Abstract][Full Text] [Related]
12. Electroencephalogram background activity characterization with approximate entropy and auto mutual information in Alzheimer's disease patients. Abásolo D; Hornero R; Espino P; Escudero J; Gómez C Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6192-5. PubMed ID: 18003435 [TBL] [Abstract][Full Text] [Related]
13. Characterization of EEGs in Alzheimer's disease using information theoretic methods. Zhao P; Van-Eetvelt P; Goh C; Hudson N; Wimalaratna S; Ifeachor E Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5127-31. PubMed ID: 18003160 [TBL] [Abstract][Full Text] [Related]
14. Techniques for early detection of Alzheimer's disease using spontaneous EEG recordings. Woon WL; Cichocki A; Vialatte F; Musha T Physiol Meas; 2007 Apr; 28(4):335-47. PubMed ID: 17395990 [TBL] [Abstract][Full Text] [Related]
15. Entropies for detection of epilepsy in EEG. Kannathal N; Choo ML; Acharya UR; Sadasivan PK Comput Methods Programs Biomed; 2005 Dec; 80(3):187-94. PubMed ID: 16219385 [TBL] [Abstract][Full Text] [Related]
16. The use of kurtosis de-noising for EEG analysis of patients suffering from Alzheimer's disease. Wang G; Shepherd SJ; Beggs CB; Rao N; Zhang Y Biomed Mater Eng; 2015; 26 Suppl 1():S1135-48. PubMed ID: 26405871 [TBL] [Abstract][Full Text] [Related]
17. Clustering and modeling of EEG coherence features of Alzheimer's and mild cognitive impairment patients. Akrofi K; Baker MC; O'Boyle MW; Schiffer RB Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1092-5. PubMed ID: 19162853 [TBL] [Abstract][Full Text] [Related]
18. Validity of the quantitative EEG statistical pattern recognition method in diagnosing Alzheimer's disease. Ommundsen N; Engedal K; Øksengård AR Dement Geriatr Cogn Disord; 2011; 31(3):195-201. PubMed ID: 21430383 [TBL] [Abstract][Full Text] [Related]
19. Automatic classification of athletes with residual functional deficits following concussion by means of EEG signal using support vector machine. Cao C; Tutwiler RL; Slobounov S IEEE Trans Neural Syst Rehabil Eng; 2008 Aug; 16(4):327-35. PubMed ID: 18701381 [TBL] [Abstract][Full Text] [Related]
20. A novel methodology for automated differential diagnosis of mild cognitive impairment and the Alzheimer's disease using EEG signals. Amezquita-Sanchez JP; Mammone N; Morabito FC; Marino S; Adeli H J Neurosci Methods; 2019 Jul; 322():88-95. PubMed ID: 31055026 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]