These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 22254834)

  • 1. Insight into DNA periodicity by a single-channel sequence data approach.
    Zoltowski M
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2438-41. PubMed ID: 22254834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is DNA code periodicity only due to CUF-codons usage frequency?
    Zoltowski M
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1383-6. PubMed ID: 18002222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Analysis, identification and correction of some errors of model refseqs appeared in NCBI Human Gene Database by in silico cloning and experimental verification of novel human genes].
    Zhang DL; Ji L; Li YD
    Yi Chuan Xue Bao; 2004 May; 31(5):431-43. PubMed ID: 15478601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alignment method for spectrograms of DNA sequences.
    Bucur A; van Leeuwen J; Dimitrova N; Mittal C
    IEEE Trans Inf Technol Biomed; 2010 Jan; 14(1):3-9. PubMed ID: 19789120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Representation of DNA sequences in genetic codon context with applications in exon and intron prediction.
    Yin C
    J Bioinform Comput Biol; 2015 Apr; 13(2):1550004. PubMed ID: 25491390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A three-state model for DNA protein-coding regions.
    Pinho AJ; Neves AJ; Afreixo V; Bastos CA; Ferreira PJ
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2148-55. PubMed ID: 17073319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recurrence time statistics: versatile tools for genomic DNA sequence analysis.
    Cao Y; Tung WW; Gao JB
    Proc IEEE Comput Syst Bioinform Conf; 2004; ():40-51. PubMed ID: 16447998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localizing triplet periodicity in DNA and cDNA sequences.
    Wang L; Stein LD
    BMC Bioinformatics; 2010 Nov; 11():550. PubMed ID: 21059240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Study of numerical mapping methods for DNA sequences].
    Nini R; Lijun Q
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Aug; 22(4):681-5. PubMed ID: 16156249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomic signal processing methods for computation of alignment-free distances from DNA sequences.
    Borrayo E; Mendizabal-Ruiz EG; Vélez-Pérez H; Romo-Vázquez R; Mendizabal AP; Morales JA
    PLoS One; 2014; 9(11):e110954. PubMed ID: 25393409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quaternionic periodicity transform: an algebraic solution to the tandem repeat detection problem.
    Brodzik AK
    Bioinformatics; 2007 Mar; 23(6):694-700. PubMed ID: 17237057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Space-conserving optimal DNA-protein alignment.
    Ko P; Narayanan M; Kalyanaraman A; Aluru S
    Proc IEEE Comput Syst Bioinform Conf; 2004; ():80-8. PubMed ID: 16448002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of the periodicity and the self-similarity in DNA sequence: a Fourier transform analysis.
    Nagai N; Kuwata K; Hayashi T; Kuwata H; Era S
    Jpn J Physiol; 2001 Apr; 51(2):159-68. PubMed ID: 11405908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of protein coding regions by the 3-base periodicity analysis of a DNA sequence.
    Yin C; Yau SS
    J Theor Biol; 2007 Aug; 247(4):687-94. PubMed ID: 17509616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of various algorithms for recognizing short coding sequences of human genes.
    Gao F; Zhang CT
    Bioinformatics; 2004 Mar; 20(5):673-81. PubMed ID: 14764563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Segmentation of short human exons based on spectral features of double curves.
    Jiang R; Yan H
    Int J Data Min Bioinform; 2008; 2(1):15-35. PubMed ID: 18399326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of probable genes by Fourier analysis of genomic sequences.
    Tiwari S; Ramachandran S; Bhattacharya A; Bhattacharya S; Ramaswamy R
    Comput Appl Biosci; 1997 Jun; 13(3):263-70. PubMed ID: 9183531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signalign: An Ontology of DNA as Signal for Comparative Gene Structure Prediction Using Information-Coding-and-Processing Techniques.
    Yu N; Guo X; Gu F; Pan Y
    IEEE Trans Nanobioscience; 2016 Mar; 15(2):119-30. PubMed ID: 27046906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative analysis of long DNA sequences by per element information content using different contexts.
    Dix TI; Powell DR; Allison L; Bernal J; Jaeger S; Stern L
    BMC Bioinformatics; 2007 May; 8 Suppl 2(Suppl 2):S10. PubMed ID: 17493248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glocal alignment: finding rearrangements during alignment.
    Brudno M; Malde S; Poliakov A; Do CB; Couronne O; Dubchak I; Batzoglou S
    Bioinformatics; 2003; 19 Suppl 1():i54-62. PubMed ID: 12855437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.