These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 22254941)

  • 1. Delivering optical power to subcutaneous implanted devices.
    Ayazian S; Hassibi A
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2874-7. PubMed ID: 22254941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A photovoltaic-driven and energy-autonomous CMOS implantable sensor.
    Ayazian S; Akhavan VA; Soenen E; Hassibi A
    IEEE Trans Biomed Circuits Syst; 2012 Aug; 6(4):336-43. PubMed ID: 23853178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioinspired, Nanostructure-Amplified, Subcutaneous Light Harvesting to Power Implantable Biomedical Electronics.
    Sun L; Cheng C; Wang S; Tang J; Xie R; Wang D
    ACS Nano; 2021 Aug; 15(8):12475-12482. PubMed ID: 34355573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy harvesting for the implantable biomedical devices: issues and challenges.
    Hannan MA; Mutashar S; Samad SA; Hussain A
    Biomed Eng Online; 2014 Jun; 13():79. PubMed ID: 24950601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic frequency controller for power amplifiers used in bio-implanted applications: issues and challenges.
    Hannan MA; Hussein HA; Mutashar S; Samad SA; Hussain A
    Sensors (Basel); 2014 Dec; 14(12):23843-70. PubMed ID: 25615728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manufacture of custom CMOS LSI for an implantable multipurpose biotelemetry system.
    Seo H; Esashi M; Matsuo T
    Front Med Biol Eng; 1989; 1(4):319-29. PubMed ID: 2486919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Materials Strategies and Device Architectures of Emerging Power Supply Devices for Implantable Bioelectronics.
    Huang X; Wang L; Wang H; Zhang B; Wang X; Stening RYZ; Sheng X; Yin L
    Small; 2020 Apr; 16(15):e1902827. PubMed ID: 31513333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A high-efficiency low-voltage CMOS rectifier for harvesting energy in implantable devices.
    Hashemi SS; Sawan M; Savaria Y
    IEEE Trans Biomed Circuits Syst; 2012 Aug; 6(4):326-35. PubMed ID: 23853177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Body-Integrated Self-Powered System for Wearable and Implantable Applications.
    Shi B; Liu Z; Zheng Q; Meng J; Ouyang H; Zou Y; Jiang D; Qu X; Yu M; Zhao L; Fan Y; Wang ZL; Li Z
    ACS Nano; 2019 May; 13(5):6017-6024. PubMed ID: 31083973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy Harvesting by Subcutaneous Solar Cells: A Long-Term Study on Achievable Energy Output.
    Bereuter L; Williner S; Pianezzi F; Bissig B; Buecheler S; Burger J; Vogel R; Zurbuchen A; Haeberlin A
    Ann Biomed Eng; 2017 May; 45(5):1172-1180. PubMed ID: 28050727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical energy transfer for intraocular microsystems studied in rabbits.
    Laube T; Brockmann C; Buss R; Lau C; Höck K; Stawski N; Stieglitz T; Richter HA; Schilling H
    Graefes Arch Clin Exp Ophthalmol; 2004 Aug; 242(8):661-7. PubMed ID: 15221298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An implantable power supply with an optically rechargeable lithium battery.
    Goto K; Nakagawa T; Nakamura O; Kawata S
    IEEE Trans Biomed Eng; 2001 Jul; 48(7):830-3. PubMed ID: 11442295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Fully Biodegradable Battery for Self-Powered Transient Implants.
    Huang X; Wang D; Yuan Z; Xie W; Wu Y; Li R; Zhao Y; Luo D; Cen L; Chen B; Wu H; Xu H; Sheng X; Zhang M; Zhao L; Yin L
    Small; 2018 Jul; 14(28):e1800994. PubMed ID: 29806124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-Powered Implantable Medical Devices: Photovoltaic Energy Harvesting Review.
    Zhao J; Ghannam R; Htet KO; Liu Y; Law MK; Roy VAL; Michel B; Imran MA; Heidari H
    Adv Healthc Mater; 2020 Sep; 9(17):e2000779. PubMed ID: 32729228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recharging the battery of implantable biomedical devices by light.
    Algora C; Peña R
    Artif Organs; 2009 Oct; 33(10):855-60. PubMed ID: 19624580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Meeting design challenges of ultralow-power system-on-chip technology.
    Morris S
    Med Device Technol; 2004 Nov; 15(9):30-4. PubMed ID: 16231786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A wireless power interface for rechargeable battery operated neural recording implants.
    Li P; Principe JC; Bashirullah R
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():6253-6. PubMed ID: 17946366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polydimethylsiloxane-based optical waveguides for tetherless powering of floating microstimulators.
    Ersen A; Sahin M
    J Biomed Opt; 2017 May; 22(5):55005. PubMed ID: 28500857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbattery technologies for miniaturized implantable medical devices.
    Nathan M
    Curr Pharm Biotechnol; 2010 Jun; 11(4):404-10. PubMed ID: 20199378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diamond encapsulated photovoltaics for transdermal power delivery.
    Ahnood A; Fox KE; Apollo NV; Lohrmann A; Garrett DJ; Nayagam DA; Karle T; Stacey A; Abberton KM; Morrison WA; Blakers A; Prawer S
    Biosens Bioelectron; 2016 Mar; 77():589-97. PubMed ID: 26476599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.