These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 22254974)

  • 1. Feasibility study for future implantable neural-silicon interface devices.
    Al-Armaghany A; Yu B; Mak T; Tong KF; Sun Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():3009-15. PubMed ID: 22254974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stream-based Hebbian eigenfilter for real-time neuronal spike discrimination.
    Yu B; Mak T; Li X; Smith L; Sun Y; Poon CS
    Biomed Eng Online; 2012 Apr; 11():18. PubMed ID: 22490725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Implantable Wireless Neural Interface System for Simultaneous Recording and Stimulation of Peripheral Nerve with a Single Cuff Electrode.
    Shon A; Chu JU; Jung J; Kim H; Youn I
    Sensors (Basel); 2017 Dec; 18(1):. PubMed ID: 29267230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Fully Integrated Wireless Compressed Sensing Neural Signal Acquisition System for Chronic Recording and Brain Machine Interface.
    Liu X; Zhang M; Xiong T; Richardson AG; Lucas TH; Chin PS; Etienne-Cummings R; Tran TD; Van der Spiegel J
    IEEE Trans Biomed Circuits Syst; 2016 Aug; 10(4):874-883. PubMed ID: 27448368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A method for compression of intra-cortically-recorded neural signals dedicated to implantable brain-machine interfaces.
    Shaeri MA; Sodagar AM
    IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):485-97. PubMed ID: 25222949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural cache: a low-power online digital spike-sorting architecture.
    Peng CC; Sabharwal P; Bashirullah R
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2004-7. PubMed ID: 19163086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implantable neurotechnologies: a review of integrated circuit neural amplifiers.
    Ng KA; Greenwald E; Xu YP; Thakor NV
    Med Biol Eng Comput; 2016 Jan; 54(1):45-62. PubMed ID: 26798055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-Design Method and Wafer-Level Packaging Technique of Thin-Film Flexible Antenna and Silicon CMOS Rectifier Chips for Wireless-Powered Neural Interface Systems.
    Okabe K; Jeewan HP; Yamagiwa S; Kawano T; Ishida M; Akita I
    Sensors (Basel); 2015 Dec; 15(12):31821-32. PubMed ID: 26694407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Power feasibility of implantable digital spike sorting circuits for neural prosthetic systems.
    Zumsteg ZS; Kemere C; O'Driscoll S; Santhanam G; Ahmed RE; Shenoy KV; Meng TH
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):272-9. PubMed ID: 16200751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards neuro-silicon interface using reconfigurable dynamic clamping.
    Luo JW; Mak T; Yu B; Andras P; Yakovlev A
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6389-92. PubMed ID: 22255800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implantable and ingestible medical devices with wireless telemetry functionalities: a review of current status and challenges.
    Kiourti A; Psathas KA; Nikita KS
    Bioelectromagnetics; 2014 Jan; 35(1):1-15. PubMed ID: 24115132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Fully Implantable, Programmable and Multimodal Neuroprocessor for Wireless, Cortically Controlled Brain-Machine Interface Applications.
    Zhang F; Aghagolzadeh M; Oweiss K
    J Signal Process Syst; 2012 Dec; 69(3):351-361. PubMed ID: 23050029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fully Implantable Low-Power High Frequency Range Optoelectronic Devices for Dual-Channel Modulation in the Brain.
    Kim WS; Jeong M; Hong S; Lim B; Park SI
    Sensors (Basel); 2020 Jun; 20(13):. PubMed ID: 32610454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial Redundancy Reduction in Multi-Channel Implantable Neural Recording Microsystems.
    Khazaei Y; Shahkooh AA; Sodagar AM
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():898-901. PubMed ID: 33018129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Realistic modeling of the biological channel for the design of implantable wireless UWB communication systems.
    Bahrami H; Gosselin B; Rusch LA
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6015-8. PubMed ID: 23367300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new hermetic antenna for wireless transmission systems of implantable medical devices.
    Marcelli E; Scalambra F; Cercenelli L; Plicchi G
    Med Eng Phys; 2007 Jan; 29(1):140-7. PubMed ID: 16504564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A single-chip signal processing and telemetry engine for an implantable 96-channel neural data acquisition system.
    Rizk M; Obeid I; Callender SH; Wolf PD
    J Neural Eng; 2007 Sep; 4(3):309-21. PubMed ID: 17873433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chronic neural recording using silicon-substrate microelectrode arrays implanted in cerebral cortex.
    Vetter RJ; Williams JC; Hetke JF; Nunamaker EA; Kipke DR
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):896-904. PubMed ID: 15188856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implantable neurotechnologies: bidirectional neural interfaces--applications and VLSI circuit implementations.
    Greenwald E; Masters MR; Thakor NV
    Med Biol Eng Comput; 2016 Jan; 54(1):1-17. PubMed ID: 26753776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The PennBMBI: Design of a General Purpose Wireless Brain-Machine-Brain Interface System.
    Liu X; Zhang M; Subei B; Richardson AG; Lucas TH; Van der Spiegel J
    IEEE Trans Biomed Circuits Syst; 2015 Apr; 9(2):248-58. PubMed ID: 25769171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.