These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 22254989)

  • 1. A novel method for EOG features extraction from the forehead.
    Cai HY; Ma JX; Shi LC; Lu BL
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():3075-8. PubMed ID: 22254989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multimodal approach to estimating vigilance using EEG and forehead EOG.
    Zheng WL; Lu BL
    J Neural Eng; 2017 Apr; 14(2):026017. PubMed ID: 28102833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removing the Interdependency between Horizontal and Vertical Eye-Movement Components in Electrooculograms.
    Chang WD; Cha HS; Im CH
    Sensors (Basel); 2016 Feb; 16(2):227. PubMed ID: 26907271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Wearable Forehead EOG Measurement System for Human Computer Interfaces.
    Heo J; Yoon H; Park KS
    Sensors (Basel); 2017 Jun; 17(7):. PubMed ID: 28644398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Robust Gaze Estimation Approach via Exploring Relevant Electrooculogram Features and Optimal Electrodes Placements.
    Zeng Z; Tao L; Zhu H; Zhu Y; Meng L; Fan J; Chen C; Chen W
    IEEE J Transl Eng Health Med; 2024; 12():56-65. PubMed ID: 38088999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vigilance estimation by using electrooculographic features.
    Ma JX; Shi LC; Lu BL
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():6591-4. PubMed ID: 21096514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel approach for detection of dyslexia using convolutional neural network with EOG signals.
    Ileri R; Latifoğlu F; Demirci E
    Med Biol Eng Comput; 2022 Nov; 60(11):3041-3055. PubMed ID: 36063351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gaze Estimation Method Using Analysis of Electrooculogram Signals and Kinect Sensor.
    Sakurai K; Yan M; Tanno K; Tamura H
    Comput Intell Neurosci; 2017; 2017():2074752. PubMed ID: 28912800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of small differences in electrode position on EOG signals: application to vigilance studies.
    Häkkinen V; Hirvonen K; Hasan J; Kataja M; Värri A; Loula P; Eskola H
    Electroencephalogr Clin Neurophysiol; 1993 Apr; 86(4):294-300. PubMed ID: 7682933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facial Motion Capture System Based on Facial Electromyogram and Electrooculogram for Immersive Social Virtual Reality Applications.
    Kim C; Cha HS; Kim J; Kwak H; Lee W; Im CH
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Comparative Investigation of Wavelet Families for Classification of EOG Signals Related to Healthy and ADHD Children.
    Ayoubipour S; Sho'ouri N
    Clin EEG Neurosci; 2024 Jan; 55(1):11-21. PubMed ID: 37605610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling a human-computer interface system with a novel classification method that uses electrooculography signals.
    Wu SL; Liao LD; Lu SW; Jiang WL; Chen SA; Lin CT
    IEEE Trans Biomed Eng; 2013 Aug; 60(8):2133-41. PubMed ID: 23446030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Open Software/Hardware Platform for Human-Computer Interface Based on Electrooculography (EOG) Signal Classification.
    Martínez-Cerveró J; Ardali MK; Jaramillo-Gonzalez A; Wu S; Tonin A; Birbaumer N; Chaudhary U
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32344820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of saccadic eye movements by electrooculography for simultaneous EEG recording.
    Jia Y; Tyler CW
    Behav Res Methods; 2019 Oct; 51(5):2139-2151. PubMed ID: 31313136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [An improved weighted median filter and its application in EOG processing].
    Shi N; Wang X; Zou J; Wang B
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Oct; 24(5):1069-72. PubMed ID: 18027699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Affordable Method for Evaluation of Ataxic Disorders Based on Electrooculography.
    López A; Ferrero F; Postolache O
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31480331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EEG-EOG based Virtual Keyboard: Toward Hybrid Brain Computer Interface.
    Hosni SM; Shedeed HA; Mabrouk MS; Tolba MF
    Neuroinformatics; 2019 Jul; 17(3):323-341. PubMed ID: 30368637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using eye movement to control a computer: a design for a lightweight electro-oculogram electrode array and computer interface.
    Iáñez E; Azorin JM; Perez-Vidal C
    PLoS One; 2013; 8(7):e67099. PubMed ID: 23843986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Single-Channel EOG-Based Speller.
    He S; Li Y
    IEEE Trans Neural Syst Rehabil Eng; 2017 Nov; 25(11):1978-1987. PubMed ID: 28641264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monopolar and bipolar electrooculography signal characteristics due to target displacements-have we seen the whole picture?
    Barbara N; Camilleri TA; Camilleri KP
    Physiol Meas; 2023 Mar; 44(3):. PubMed ID: 36599169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.