These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 22254996)

  • 1. Fibre-selective recording from peripheral nerves using a multiple-contact cuff: report on pilot pig experiments.
    Schuettler M; Seetohul V; Rijkhoff NJ; Moeller FV; Donaldson N; Taylor J
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():3103-6. PubMed ID: 22254996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment on selectivity of multi-contact cuff electrode for recording peripheral nerve signals using Fitzhugh-Nagumo model of nerve excitation.
    Taghipour-Farshi H; Frounchi J; Ahmadiasl N; Shahabi P; Salekzamani Y
    J Back Musculoskelet Rehabil; 2016 Nov; 29(4):749-756. PubMed ID: 26966830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fibre-selective recording from the peripheral nerves of frogs using a multi-electrode cuff.
    Schuettler M; Donaldson N; Seetohul V; Taylor J
    J Neural Eng; 2013 Jun; 10(3):036016. PubMed ID: 23640008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A device for emulating cuff recordings of action potentials propagating along peripheral nerves.
    Rieger R; Schuettler M; Chuang SC
    IEEE Trans Neural Syst Rehabil Eng; 2014 Sep; 22(5):937-45. PubMed ID: 24760928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved nerve cuff electrode recordings with subthreshold anodic currents.
    Sahin M; Durand DM
    IEEE Trans Biomed Eng; 1998 Aug; 45(8):1044-50. PubMed ID: 9691579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fibre-selective discrimination of physiological ENG using velocity selective recording: report on pilot rat experiments.
    Metcalfe B; Chew D; Clarke C; Donaldson N; Taylor J
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2645-8. PubMed ID: 25570534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Velocity Selective Recording: A Demonstration of Effectiveness on the Vagus Nerve in Pig.
    Metcalfe B; Nielsen T; Taylor J
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1-4. PubMed ID: 30440281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing the design of bipolar nerve cuff electrodes for improved recording of peripheral nerve activity.
    Sabetian P; Popovic MR; Yoo PB
    J Neural Eng; 2017 Jun; 14(3):036015. PubMed ID: 28251960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design, fabrication and evaluation of a conforming circumpolar peripheral nerve cuff electrode for acute experimental use.
    Foldes EL; Ackermann DM; Bhadra N; Kilgore KL; Bhadra N
    J Neurosci Methods; 2011 Mar; 196(1):31-7. PubMed ID: 21187115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microneurography as a minimally invasive method to assess target engagement during neuromodulation.
    Verma N; Knudsen B; Gholston A; Skubal A; Blanz S; Settell M; Frank J; Trevathan J; Ludwig K
    J Neural Eng; 2023 Apr; 20(2):. PubMed ID: 36898148
    [No Abstract]   [Full Text] [Related]  

  • 11. Experimental validation of the nerve conduction velocity selective recording technique using a multi-contact cuff electrode.
    Yoshida K; Kurstjens GA; Hennings K
    Med Eng Phys; 2009 Dec; 31(10):1261-70. PubMed ID: 19762269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective stimulation of pig radial nerve: comparison of 12-polar and 18-polar cuff electrodes.
    Schuettler M; Riso RR; Dalmose A; Stefania D; Stieglitz T
    Biomed Tech (Berl); 2002; 47 Suppl 1 Pt 2():696-9. PubMed ID: 12465277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directionally-sensitive peripheral nerve recording: bipolar nerve cuff design.
    Sabetian P; Popovic MR; Yoo PB
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6178-6181. PubMed ID: 28269663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Velocity-selective recording from frog nerve using a multi-contact cuff electrode.
    Schuettler M; Seetohul V; Taylor J; Donaldson N
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2962-5. PubMed ID: 17945748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of the performance of nerve cuff electrodes for recording.
    Andreasen LN; Struijk JJ; Lawrence S
    Med Biol Eng Comput; 2000 Jul; 38(4):447-53. PubMed ID: 10984944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An intrafascicular electrode for recording of action potentials in peripheral nerves.
    Malagodi MS; Horch KW; Schoenberg AA
    Ann Biomed Eng; 1989; 17(4):397-410. PubMed ID: 2774314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dependence of the linear model for the nerve compound action potential on the single fibre action potential waveform.
    Contento G; Barbina V; Malisan MR; Padovani R; Budai R; Pittaro I
    Clin Phys Physiol Meas; 1983 Nov; 4(4):417-33. PubMed ID: 6653045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rodent model for assessing the long term safety and performance of peripheral nerve recording electrodes.
    Vasudevan S; Patel K; Welle C
    J Neural Eng; 2017 Feb; 14(1):016008. PubMed ID: 27934777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective peripheral nerve recordings from nerve cuff electrodes using convolutional neural networks.
    Koh RGL; Balas M; Nachman AI; Zariffa J
    J Neural Eng; 2020 Jan; 17(1):016042. PubMed ID: 31581142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of the choice of reference on the selectivity of a multi-contact nerve cuff electrode.
    Koh RG; Zariffa J
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4443-4446. PubMed ID: 28269264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.