These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 22255051)
1. Tracking the changes of hippocampal population nonlinear dynamics in rats learning a memory-dependent task. Chan RH; Song D; Goonawardena AV; Bough S; Sesay J; Hampson RE; Deadwyler SA; Berger TW Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():3326-9. PubMed ID: 22255051 [TBL] [Abstract][Full Text] [Related]
2. Changes of hippocampal CA3-CA1 population nonlinear dynamics across different training sessions in rats performing a memory-dependent task. Chan RH; Song D; Goonawardena AV; Bough S; Sesay J; Hampson RE; Deadwyler SA; Berger TW Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5464-7. PubMed ID: 21096285 [TBL] [Abstract][Full Text] [Related]
3. Nonlinear dynamic modeling of spike train transformations for hippocampal-cortical prostheses. Song D; Chan RH; Marmarelis VZ; Hampson RE; Deadwyler SA; Berger TW IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):1053-66. PubMed ID: 17554824 [TBL] [Abstract][Full Text] [Related]
4. Sparse Large-Scale Nonlinear Dynamical Modeling of Human Hippocampus for Memory Prostheses. Song D; Robinson BS; Hampson RE; Marmarelis VZ; Deadwyler SA; Berger TW IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):272-280. PubMed ID: 28113595 [TBL] [Abstract][Full Text] [Related]
5. Sparse generalized volterra model of human hippocampal spike train transformation for memory prostheses. Song D; Robinson BS; Hampson RE; Marmarelis VZ; Deadwyler SA; Berger TW Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3961-4. PubMed ID: 26737161 [TBL] [Abstract][Full Text] [Related]
6. Sparse generalized Laguerre-Volterra model of neural population dynamics. Song D; Chan RH; Marmarelis VZ; Hampson RE; Deadwyler SA; Berger TW Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4555-8. PubMed ID: 19963836 [TBL] [Abstract][Full Text] [Related]
7. Recruitment of hippocampal neurons to encode behavioral events in the rat: alterations in cognitive demand and cannabinoid exposure. Goonawardena AV; Robinson L; Riedel G; Hampson RE Hippocampus; 2010 Sep; 20(9):1083-94. PubMed ID: 19771586 [TBL] [Abstract][Full Text] [Related]
8. Extraction and restoration of hippocampal spatial memories with non-linear dynamical modeling. Song D; Harway M; Marmarelis VZ; Hampson RE; Deadwyler SA; Berger TW Front Syst Neurosci; 2014; 8():97. PubMed ID: 24904318 [TBL] [Abstract][Full Text] [Related]
10. System identification of point-process neural systems using probability based Volterra kernels. Sandler RA; Deadwyler SA; Hampson RE; Song D; Berger TW; Marmarelis VZ J Neurosci Methods; 2015 Jan; 240():179-92. PubMed ID: 25479231 [TBL] [Abstract][Full Text] [Related]
11. A nonlinear model for hippocampal cognitive prosthesis: memory facilitation by hippocampal ensemble stimulation. Hampson RE; Song D; Chan RH; Sweatt AJ; Riley MR; Gerhardt GA; Shin DC; Marmarelis VZ; Berger TW; Deadwyler SA IEEE Trans Neural Syst Rehabil Eng; 2012 Mar; 20(2):184-97. PubMed ID: 22438334 [TBL] [Abstract][Full Text] [Related]
12. Estimation and statistical validation of event-invariant nonlinear dynamic models of hippocampal CA3-CA1 population activities. Song D; Chan RH; Marmarelis VZ; Hampson RE; Deadwyler SA; Berger TW Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():3330-3. PubMed ID: 22255052 [TBL] [Abstract][Full Text] [Related]
13. Nonlinear modeling of neural population dynamics for hippocampal prostheses. Song D; Chan RH; Marmarelis VZ; Hampson RE; Deadwyler SA; Berger TW Neural Netw; 2009 Nov; 22(9):1340-51. PubMed ID: 19501484 [TBL] [Abstract][Full Text] [Related]
14. Nonlinear dynamical model based control of in vitro hippocampal output. Hsiao MC; Song D; Berger TW Front Neural Circuits; 2013; 7():20. PubMed ID: 23429994 [TBL] [Abstract][Full Text] [Related]
15. Transient changes in excitability of rabbit CA3 neurons with a time course appropriate to support memory consolidation. Thompson LT; Moyer JR; Disterhoft JF J Neurophysiol; 1996 Sep; 76(3):1836-49. PubMed ID: 8890296 [TBL] [Abstract][Full Text] [Related]
16. Identification of time-varying neural dynamics from spike train data using multiwavelet basis functions. Xu S; Li Y; Guo Q; Yang XF; Chan RHM J Neurosci Methods; 2017 Feb; 278():46-56. PubMed ID: 28062244 [TBL] [Abstract][Full Text] [Related]
17. Nonstationary modeling of neural population dynamics. Chan RH; Song D; Berger TW Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4559-62. PubMed ID: 19963837 [TBL] [Abstract][Full Text] [Related]
18. Tracking temporal evolution of nonlinear dynamics in hippocampus using time-varying volterra kernels. Chan RH; Song D; Berger TW Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4996-9. PubMed ID: 19163839 [TBL] [Abstract][Full Text] [Related]
19. Design of optimal stimulation patterns for neuronal ensembles based on Volterra-type hierarchical modeling. Marmarelis VZ; Shin DC; Hampson RE; Deadwyler SA; Song D; Berger TW J Neural Eng; 2012 Dec; 9(6):066003. PubMed ID: 23075519 [TBL] [Abstract][Full Text] [Related]
20. Hippocampal CA1 spiking during encoding and retrieval: relation to theta phase. Manns JR; Zilli EA; Ong KC; Hasselmo ME; Eichenbaum H Neurobiol Learn Mem; 2007 Jan; 87(1):9-20. PubMed ID: 16839788 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]