These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 22255057)

  • 1. A comparison of the effects of majority vote and a decision-based velocity ramp on real-time pattern recognition control.
    Simon AM; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():3350-3. PubMed ID: 22255057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A decision-based velocity ramp for minimizing the effect of misclassifications during real-time pattern recognition control.
    Simon AM; Hargrove LJ; Lock BA; Kuiken TA
    IEEE Trans Biomed Eng; 2011 Aug; 58(8):. PubMed ID: 21592916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A strategy for minimizing the effect of misclassifications during real time pattern recognition myoelectric control.
    Simon AM; Hargrove LJ; Lock BA; Kuiken TA
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1327-30. PubMed ID: 19964513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual Window Pattern Recognition Classifier for Improved Partial-Hand Prosthesis Control.
    Earley EJ; Hargrove LJ; Kuiken TA
    Front Neurosci; 2016; 10():58. PubMed ID: 26941599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adapting myoelectric control in real-time using a virtual environment.
    Woodward RB; Hargrove LJ
    J Neuroeng Rehabil; 2019 Jan; 16(1):11. PubMed ID: 30651109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Confidence-based rejection for improved pattern recognition myoelectric control.
    Scheme EJ; Hudgins BS; Englehart KB
    IEEE Trans Biomed Eng; 2013 Jun; 60(6):1563-70. PubMed ID: 23322756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive myoelectric pattern recognition toward improved multifunctional prosthesis control.
    Liu J
    Med Eng Phys; 2015 Apr; 37(4):424-30. PubMed ID: 25749182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduction of the effect of arm position variation on real-time performance of motion classification.
    Geng Y; Zhang F; Yang L; Zhang Y; Li G
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2772-5. PubMed ID: 23366500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust Pattern Recognition Myoelectric Training for Improved Online Control within a 3D Virtual Environment.
    Woodward RB; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4701-4704. PubMed ID: 30441399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving the Robustness of Real-Time Myoelectric Pattern Recognition against Arm Position Changes in Transradial Amputees.
    Geng Y; Samuel OW; Wei Y; Li G
    Biomed Res Int; 2017; 2017():5090454. PubMed ID: 28523276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-Time EMG Based Pattern Recognition Control for Hand Prostheses: A Review on Existing Methods, Challenges and Future Implementation.
    Parajuli N; Sreenivasan N; Bifulco P; Cesarelli M; Savino S; Niola V; Esposito D; Hamilton TJ; Naik GR; Gunawardana U; Gargiulo GD
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31652616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Confidence-Based Rejection on Usability and Error in Pattern Recognition-Based Myoelectric Control.
    Robertson JW; Englehart KB; Scheme EJ
    IEEE J Biomed Health Inform; 2019 Sep; 23(5):2002-2008. PubMed ID: 30387754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of direct and pattern recognition control for a two degree-of-freedom above elbow virtual prosthesis.
    Toledo C; Simon A; Muñoz R; Vera A; Leija L; Hargrove L
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4332-5. PubMed ID: 23366886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of Group Perception via a Collaborative Brain-Computer Interface.
    Valeriani D; Poli R; Cinel C
    IEEE Trans Biomed Eng; 2017 Jun; 64(6):1238-1248. PubMed ID: 28541187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FMG Versus EMG: A Comparison of Usability for Real-Time Pattern Recognition Based Control.
    Belyea A; Englehart K; Scheme E
    IEEE Trans Biomed Eng; 2019 Nov; 66(11):3098-3104. PubMed ID: 30794502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of Computer-Based Target Achievement Tests for Myoelectric Control.
    Gusman J; Mastinu E; Ortiz-Catalan M
    IEEE J Transl Eng Health Med; 2017; 5():2100310. PubMed ID: 29255654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rejection of Systemic and Operator Errors in a Real-Time Myoelectric Control Task.
    Robertson JW; Englehart KB; Scheme EJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5640-5643. PubMed ID: 30441615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship Between Offline and Online Metrics in Myoelectric Pattern Recognition Control Based on Target Achievement Control Test.
    Lv B; Sheng X; Hao D; Zhu X
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6595-6598. PubMed ID: 31947353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of Muscle Synergies in Real-Time Classification of Upper Limb Motions using Extreme Learning Machines.
    Antuvan CW; Bisio F; Marini F; Yen SC; Cambria E; Masia L
    J Neuroeng Rehabil; 2016 Aug; 13(1):76. PubMed ID: 27527511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved prosthetic hand control with concurrent use of myoelectric and inertial measurements.
    Krasoulis A; Kyranou I; Erden MS; Nazarpour K; Vijayakumar S
    J Neuroeng Rehabil; 2017 Jul; 14(1):71. PubMed ID: 28697795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.