These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 22255087)

  • 1. Redundancy resolution of a human arm for controlling a seven DOF wearable robotic system.
    Kim H; Miller LM; Al-Refai A; Brand M; Rosen J
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():3471-4. PubMed ID: 22255087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redundancy resolution of the human arm and an upper limb exoskeleton.
    Kim H; Miller LM; Byl N; Abrams GM; Rosen J
    IEEE Trans Biomed Eng; 2012 Jun; 59(6):1770-9. PubMed ID: 22510944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viscoelastic model for redundancy resolution of the human arm via the swivel angle: applications for upper limb exoskeleton control.
    Kim H; Roldan JR; Li Z; Rosen J
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6471-4. PubMed ID: 23367411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redundancy and joint limits of a seven degree of freedom upper limb exoskeleton.
    Miller LM; Kim H; Rosen J
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():8154-7. PubMed ID: 22256234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From reaching to reach-to-grasp: the arm posture difference and its implications on human motion control strategy.
    Li Z; Milutinović D; Rosen J
    Exp Brain Res; 2017 May; 235(5):1627-1642. PubMed ID: 28265688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Admittance control of an upper limb exoskeleton--reduction of energy exchange.
    Kim H; Miller LM; Li Z; Roldan JR; Rosen J
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6467-70. PubMed ID: 23367410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinematic Redundancy Analysis during Goal-Directed Motion for Trajectory Planning of an Upper-Limb Exoskeleton Robot.
    Wang C; Peng L; Hou ZG; Li J; Luo L; Chen S; Wang W
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5251-5255. PubMed ID: 31947042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Task-relevance of grasping-related degrees of freedom in reach-to-grasp movements.
    Li Z; Roldan JR; Milutinovic D; Rosen J
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6903-6. PubMed ID: 25571583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human arm joints reconstruction algorithm in rehabilitation therapies assisted by end-effector robotic devices.
    Bertomeu-Motos A; Blanco A; Badesa FJ; Barios JA; Zollo L; Garcia-Aracil N
    J Neuroeng Rehabil; 2018 Feb; 15(1):10. PubMed ID: 29458397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The rotational axis approach for resolving the kinematic redundancy of the human arm in reaching movements.
    Li Z; Roldan JR; Milutinović D; Rosen J
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2507-10. PubMed ID: 24110236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of Redundant Kinematic Degrees of Freedom in a Closed-Loop Brain-Machine Interface.
    Moorman HG; Gowda S; Carmena JM
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):750-760. PubMed ID: 27455526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pilot testing of the spring operated wearable enhancer for arm rehabilitation (SpringWear).
    Chen J; Lum PS
    J Neuroeng Rehabil; 2018 Mar; 15(1):13. PubMed ID: 29499712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial Map of Synthesized Criteria for the Redundancy Resolution of Human Arm Movements.
    Li Z; Milutinovic D; Rosen J
    IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):1020-30. PubMed ID: 25532187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic modeling and torque estimation of FES-assisted arm-free standing for paraplegics.
    Kim JY; Popovic MR; Mills JK
    IEEE Trans Neural Syst Rehabil Eng; 2006 Mar; 14(1):46-54. PubMed ID: 16562631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of axis alignment on shoulder joint kinematics analysis during arm abduction.
    Levasseur A; Tétreault P; de Guise J; Nuño N; Hagemeister N
    Clin Biomech (Bristol, Avon); 2007 Aug; 22(7):758-66. PubMed ID: 17560698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of a Lightweight Soft Robotic Arm Using Pneumatic Artificial Muscles and Inflatable Sleeves.
    Ohta P; Valle L; King J; Low K; Yi J; Atkeson CG; Park YL
    Soft Robot; 2018 Apr; 5(2):204-215. PubMed ID: 29648951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptation of joint flexibility during a reach-to-grasp movement.
    Jacquier-Bret J; Rezzoug N; Gorce P
    Motor Control; 2009 Jul; 13(3):342-61. PubMed ID: 19799170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of a 6-DOF upper limb rehabilitation exoskeleton with parallel actuated joints.
    Chen Y; Li G; Zhu Y; Zhao J; Cai H
    Biomed Mater Eng; 2014; 24(6):2527-35. PubMed ID: 25226954
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.