These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 22255098)

  • 1. Series elastic actuator control of a powered exoskeleton.
    Ragonesi D; Agrawal S; Sample W; Rahman T
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():3515-8. PubMed ID: 22255098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and testing of a functional arm orthosis in patients with neuromuscular diseases.
    Rahman T; Sample W; Seliktar R; Scavina MT; Clark AL; Moran K; Alexander MA
    IEEE Trans Neural Syst Rehabil Eng; 2007 Jun; 15(2):244-51. PubMed ID: 17601194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards the control of a powered orthosis for people with muscular dystrophy.
    Rahman T; Ramanathan R; Stroud S; Sample W; Seliktar R; Harwin W; Alexander M; Scavina M
    Proc Inst Mech Eng H; 2001; 215(3):267-74. PubMed ID: 11436269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and evaluation of a hybrid passive and active gravity neutral orthosis (GNO).
    Koo B; Montes J; Gamarnik V; Yeager K; Marra J; Dunaway S; Montgomery M; De Vivo DC; Strauss N; Konofagou E; Kaufmann P; Morrison B
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1573-6. PubMed ID: 19963513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wilmington robotic exoskeleton: a novel device to maintain arm improvement in muscular disease.
    Haumont T; Rahman T; Sample W; M King M; Church C; Henley J; Jayakumar S
    J Pediatr Orthop; 2011; 31(5):e44-9. PubMed ID: 21654447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying anti-gravity torques for the design of a powered exoskeleton.
    Ragonesi D; Agrawal SK; Sample W; Rahman T
    IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):283-8. PubMed ID: 23096118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying anti-gravity torques in the design of a powered exoskeleton.
    Ragonesi D; Agrawal S; Sample W; Rahman T
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7458-61. PubMed ID: 22256063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A body-powered functional upper limb orthosis.
    Rahman T; Sample W; Seliktar R; Alexander M; Scavina M
    J Rehabil Res Dev; 2000; 37(6):675-80. PubMed ID: 11321003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A randomized controlled trial of gravity-supported, computer-enhanced arm exercise for individuals with severe hemiparesis.
    Housman SJ; Scott KM; Reinkensmeyer DJ
    Neurorehabil Neural Repair; 2009 Jun; 23(5):505-14. PubMed ID: 19237734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of an upper arm exoskeleton for gravity balancing and minimization of transmitted forces.
    Dubey VN; Agrawal SK
    Proc Inst Mech Eng H; 2011 Nov; 225(11):1025-35. PubMed ID: 22292201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. User Evaluation of a Dynamic Arm Orthosis for People With Neuromuscular Disorders.
    Gunn M; Shank TM; Eppes M; Hossain J; Rahman T
    IEEE Trans Neural Syst Rehabil Eng; 2016 Dec; 24(12):1277-1283. PubMed ID: 28055882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gravity Compensation of an Exoskeleton Joint Using Constant-Force Springs.
    Hill PW; Wolbrecht ET; Perry JC
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():311-316. PubMed ID: 31374648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of a perfect balance system for active upper-extremity exoskeletons.
    Smith RL; Lobo-Prat J; van der Kooij H; Stienen AH
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650376. PubMed ID: 24187195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Series elastic actuation of an elbow rehabilitation exoskeleton with axis misalignment adaptation.
    Wu KY; Su YY; Yu YL; Lin KY; Lan CC
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():567-572. PubMed ID: 28813880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuously-variable series-elastic actuator.
    Mooney L; Herr H
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650402. PubMed ID: 24187221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clutchable series-elastic actuator: design of a robotic knee prosthesis for minimum energy consumption.
    Rouse EJ; Mooney LM; Martinez-Villalpando EC; Herr HM
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650383. PubMed ID: 24187202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling and Control of a Cable-Driven Rotary Series Elastic Actuator for an Upper Limb Rehabilitation Robot.
    Zhang Q; Sun D; Qian W; Xiao X; Guo Z
    Front Neurorobot; 2020; 14():13. PubMed ID: 32161531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automating arm movement training following severe stroke: functional exercises with quantitative feedback in a gravity-reduced environment.
    Sanchez RJ; Liu J; Rao S; Shah P; Smith R; Rahman T; Cramer SC; Bobrow JE; Reinkensmeyer DJ
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):378-89. PubMed ID: 17009498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. User-centred assistive SystEm for arm Functions in neUromuscuLar subjects (USEFUL): a randomized controlled study.
    Longatelli V; Antonietti A; Biffi E; Diella E; D'Angelo MG; Rossini M; Molteni F; Bocciolone M; Pedrocchi A; Gandolla M
    J Neuroeng Rehabil; 2021 Jan; 18(1):4. PubMed ID: 33407580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Series-elastic actuator with two degree-of-freedom PID control improves torque control in a powered knee exoskeleton.
    Sarkisian SV; Gabert L; Lenzi T
    Wearable Technol; 2023; 4():e25. PubMed ID: 38510590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.