These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 22255221)

  • 1. Design and simulation of printed spiral coil used in wireless power transmission systems for implant medical devices.
    Wu W; Fang Q
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4018-21. PubMed ID: 22255221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inductive power transmission to millimeter-sized biomedical implants using printed spiral coils.
    Ibrahim A; Kiani M
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4800-4803. PubMed ID: 28269344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of SAR distribution in human head of antenna used in wireless power transform based on magnetic resonance.
    Gong F; Wei Z; Cong Y; Chi H; Yin B; Sun M
    Technol Health Care; 2017 Jul; 25(S1):387-397. PubMed ID: 28582927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultracompact Implantable Design With Integrated Wireless Power Transfer and RF Transmission Capabilities.
    Sun G; Muneer B; Li Y; Zhu Q
    IEEE Trans Biomed Circuits Syst; 2018 Apr; 12(2):281-291. PubMed ID: 29570056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SAR in human head model due to resonant wireless power transfer system.
    Zhang C; Liu G; Li Y; Song X
    Technol Health Care; 2016 Apr; 24 Suppl 2():S739-46. PubMed ID: 27177105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of wireless power transmission efficiency of implantable subcutaneous devices by closed magnetic circuit mechanism.
    Jo SE; Joung S; Suh JK; Kim YJ
    Med Biol Eng Comput; 2012 Sep; 50(9):973-80. PubMed ID: 22806430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal position of the transmitter coil for wireless power transfer to the implantable device.
    Jinghui Jian ; Stanaćević M
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6549-52. PubMed ID: 25571496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of radiation and SAR from wireless implanted medical devices on the human body.
    Soontornpipit P
    J Med Assoc Thai; 2012 Jun; 95 Suppl 6():S189-97. PubMed ID: 23130506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a Fully Integrated Inductive Coupling System: A Discrete Approach Towards Sensing Ventricular Pressure.
    Hernández Sebastián N; Villa Villaseñor N; Renero-Carrillo FJ; Díaz Alonso D; Calleja Arriaga W
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32164304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Safe inductive power transmission to millimeter-sized implantable microelectronics devices.
    Ibrahim A; Kiani M
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():817-20. PubMed ID: 26736387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electromagnetic and thermal effects of IR-UWB wireless implant systems on the human head.
    Thotahewa KM; Redouté JM; Yuce MR
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5179-82. PubMed ID: 24110902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of double layer printed spiral coils for wirelessly-powered biomedical implants.
    Ashoori E; Asgarian F; Sodagar AM; Yoon E
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2882-5. PubMed ID: 22254943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing Cardiac Wireless Implant Communication: A Feasibility Study on Selecting the Frequency and Matching Medium.
    Amin B; Rehman MRU; Farooq M; Elahi A; Donaghey K; Wijns W; Shahzad A; Vazquez P
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A low-frequency versatile wireless power transfer technology for biomedical implants.
    Jiang H; Zhang J; Lan D; Chao ; Liou S; Shahnasser H; Fechter R; Hirose S; Harrison M; Roy S
    IEEE Trans Biomed Circuits Syst; 2013 Aug; 7(4):526-35. PubMed ID: 23893211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Safety-Optimized Inductive Powering of Implantable Medical Devices: Tutorial and Comprehensive Design Guide.
    Soltani N; ElAnsary M; Xu J; Filho JS; Genov R
    IEEE Trans Biomed Circuits Syst; 2021 Dec; 15(6):1354-1367. PubMed ID: 34748500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [An implantable micro-device using wireless power transmission for measuring aortic aneurysm sac pressure].
    Guo X; Ge B; Wang W
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Aug; 30(4):724-9. PubMed ID: 24059044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal operating frequency in wireless power transmission for implantable devices.
    Poon AS; O'Driscoll S; Meng TH
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5674-9. PubMed ID: 18003300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling and optimization of printed spiral coils in air and muscle tissue environments.
    Jow UM; Ghovanloo M
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6387-90. PubMed ID: 19964693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis and Optimization of Four-Coil Planar Magnetically Coupled Printed Spiral Resonators.
    Khan SR; Choi G
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27527169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of a mid-field wireless power transmission system for deep-tissue implants.
    Zhang Y; Zhang X; He D; Tang D; Chen Z
    Technol Health Care; 2024; 32(3):1341-1349. PubMed ID: 38108365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.