These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 22255227)

  • 1. Broadband RF impedance spectroscopy in micromachined microfluidic channels.
    Giraud-Carrier M; Moon K; Teng E; Hawkins AR; Warnick KF; Mazzeo BA
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4042-5. PubMed ID: 22255227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A 9 MHz-2.4 GHz Fully Integrated Transceiver IC for a Microfluidic-CMOS Platform Dedicated to Miniaturized Dielectric Spectroscopy.
    Bakhshiani M; Suster MA; Mohseni P
    IEEE Trans Biomed Circuits Syst; 2015 Dec; 9(6):849-61. PubMed ID: 26761883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Modeling Procedure of the Broadband Dielectric Spectroscopy for Ionic Liquids.
    Bao X; Liu S; Ocket I; Liu Z; Schreurs DMM; Nauwelaers BKJC
    IEEE Trans Nanobioscience; 2018 Oct; 17(4):387-393. PubMed ID: 30281469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dielectrophoresis assisted loading and unloading of microwells for impedance spectroscopy.
    Mansoorifar A; Koklu A; Sabuncu AC; Beskok A
    Electrophoresis; 2017 Jun; 38(11):1466-1474. PubMed ID: 28256738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved circuit model of open-ended coaxial probe for measurement of the biological tissue dielectric properties between megahertz and gigahertz.
    Zhang L; Shi X; You F; Liu P; Dong X
    Physiol Meas; 2013 Oct; 34(10):N83-96. PubMed ID: 24021242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging of a dielectric inclusion using a contactless radio-frequency inductive probe for tissue diagnosis.
    Pasquier A; Diraison YL; Joubert PY; Serfaty S
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6049-6054. PubMed ID: 31947225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binary signals in impedance spectroscopy.
    Min M; Ojarand J; Martens O; Paavle T; Land R; Annus P; Rist M; Reidla M; Parve T
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():134-7. PubMed ID: 23365850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis.
    Heileman K; Daoud J; Tabrizian M
    Biosens Bioelectron; 2013 Nov; 49():348-59. PubMed ID: 23796534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Microfluidic Dielectric Spectroscopy System for Characterization of Biological Cells in Physiological Media.
    Bakhtiari S; Manshadi MKD; Mansoorifar A; Beskok A
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RF Remote Blood Glucose Sensor and a Microfluidic Vascular Phantom for Sensor Validation.
    Yunos MFAM; Manczak R; Guines C; Mansor AFM; Mak WC; Khan S; Ramli NA; Pothier A; Nordin AN
    Biosensors (Basel); 2021 Dec; 11(12):. PubMed ID: 34940251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-cycle myocardium tissue electrical impedance monitoring using broadband impedance spectroscopy.
    Sanchez B; Vandersteen G; Rosell-Ferrer J; Cinca J; Bragos R
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2518-21. PubMed ID: 22254853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Quadrature-Based Tunable Radio-Frequency Sensor for the Detection and Analysis of Aqueous Solutions.
    Cui Y; He Y; Wang P
    IEEE Microw Wirel Compon Lett; 2014 Jul; 24(7):490-492. PubMed ID: 25197266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling electrical double-layer effects for microfluidic impedance spectroscopy from 100 kHz to 110 GHz.
    Little CAE; Orloff ND; Hanemann IE; Long CJ; Bright VM; Booth JC
    Lab Chip; 2017 Jul; 17(15):2674-2681. PubMed ID: 28702651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Label-free virus identification and characterization using electrochemical impedance spectroscopy.
    Poenar DP; Iliescu C; Boulaire J; Yu H
    Electrophoresis; 2014 Feb; 35(2-3):433-40. PubMed ID: 24285469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of Electrode Connection Tracks on Biological Cell Measurements by Impedance Spectroscopy.
    Alves de Araujo AL; Claudel J; Kourtiche D; Nadi M
    Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31247894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dielectric spectroscopy of red blood cells in sickle cell disease.
    Liu J; Qiang Y; Du E
    Electrophoresis; 2021 Mar; 42(5):667-675. PubMed ID: 33314275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative assessment of dielectric parameters for membrane lipid bi-layers from RF permittivity measurements.
    Merla C; Liberti M; Apollonio F; d'Inzeo G
    Bioelectromagnetics; 2009 May; 30(4):286-98. PubMed ID: 19191229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Broadband spectroscopy of dynamic impedances with short chirp pulses.
    Min M; Land R; Paavle T; Parve T; Annus P; Trebbels D
    Physiol Meas; 2011 Jul; 32(7):945-58. PubMed ID: 21646703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wide-band Electrical Impedance Spectroscopy (EIS) Measures S. pombe Cell Growth in vivo.
    Zhu Z; Frey O; Hierlemann A
    Methods Mol Biol; 2018; 1721():135-153. PubMed ID: 29423854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dielectric spectroscopy of fresh fruit and vegetable tissues from 10 to 1800 MHz.
    Nelson SO
    J Microw Power Electromagn Energy; 2005; 40(1):31-47. PubMed ID: 16673832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.