These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 22255270)

  • 1. Brisk movement imagination for the non-invasive control of neuroprostheses: a first attempt.
    Müller-Putz GR; Ofner P; Kaiser V; Clauzel G; Neuper C
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4219-22. PubMed ID: 22255270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-invasive control of neuroprostheses for the upper extremity: temporal coding of brain patterns.
    Muller-Putz GR; Scherer R; Pfurtscheller G; Neuper C; Rupp R
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3353-6. PubMed ID: 19964077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid brain-computer interfaces and hybrid neuroprostheses for restoration of upper limb functions in individuals with high-level spinal cord injury.
    Rohm M; Schneiders M; Müller C; Kreilinger A; Kaiser V; Müller-Putz GR; Rupp R
    Artif Intell Med; 2013 Oct; 59(2):133-42. PubMed ID: 24064256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EEG-based neuroprosthesis control: a step towards clinical practice.
    Müller-Putz GR; Scherer R; Pfurtscheller G; Rupp R
    Neurosci Lett; 2005 Jul 1-8; 382(1-2):169-74. PubMed ID: 15911143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applying intuitive EEG-controlled grasp neuroprostheses in individuals with spinal cord injury: Preliminary results from the MoreGrasp clinical feasibility study.
    Muller-Putz GR; Rupp R; Ofner P; Pereira J; Pinegger A; Schwarz A; Zube M; Eck U; Hessing B; Schneiders M
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5949-5955. PubMed ID: 31947203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain-computer interfaces for control of neuroprostheses: from synchronous to asynchronous mode of operation.
    Müller-Putz GR; Scherer R; Pfurtscheller G; Rupp R
    Biomed Tech (Berl); 2006 Jul; 51(2):57-63. PubMed ID: 16915766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EEG-Controlled Functional Electrical Stimulation Therapy With Automated Grasp Selection: A Proof-of-Concept Study.
    Likitlersuang J; Koh R; Gong X; Jovanovic L; Bolivar-Tellería I; Myers M; Zariffa J; Márquez-Chin C
    Top Spinal Cord Inj Rehabil; 2018; 24(3):265-274. PubMed ID: 29997429
    [No Abstract]   [Full Text] [Related]  

  • 8. Phase-dependent deficits during reach-to-grasp after human spinal cord injury.
    Lei Y; Perez MA
    J Neurophysiol; 2018 Jan; 119(1):251-261. PubMed ID: 28931614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brain-machine interface facilitated neurorehabilitation via spinal stimulation after spinal cord injury: Recent progress and future perspectives.
    Alam M; Rodrigues W; Pham BN; Thakor NV
    Brain Res; 2016 Sep; 1646():25-33. PubMed ID: 27216571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Upper limb kinematics after cervical spinal cord injury: a review.
    Mateo S; Roby-Brami A; Reilly KT; Rossetti Y; Collet C; Rode G
    J Neuroeng Rehabil; 2015 Jan; 12():9. PubMed ID: 25637224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a non-invasive, multifunctional grasp neuroprosthesis and its evaluation in an individual with a high spinal cord injury.
    Rupp R; Kreilinger A; Rohm M; Kaiser V; Müller-Putz GR
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1835-8. PubMed ID: 23366269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuroprosthetics of the upper extremity--clinical application in spinal cord injury and challenges for the future.
    Rupp R; Gerner HJ
    Acta Neurochir Suppl; 2007; 97(Pt 1):419-26. PubMed ID: 17691405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cortical potentials during imagined movements in individuals with chronic spinal cord injuries.
    Lacourse MG; Cohen MJ; Lawrence KE; Romero DH
    Behav Brain Res; 1999 Oct; 104(1-2):73-88. PubMed ID: 11125744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Functional rehabilitation of spinal cord injured persons using neuroprostheses].
    Rupp R; Abel R
    Orthopade; 2005 Feb; 34(2):144-51. PubMed ID: 15650822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implanted stimulators for restoration of function in spinal cord injury.
    Bhadra N; Kilgore KL; Peckham PH
    Med Eng Phys; 2001 Jan; 23(1):19-28. PubMed ID: 11344004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of Neuroprosthetic Approaches to Restoration of Upper Extremity Function in Spinal Cord Injury.
    Kilgore KL; Bryden A; Keith MW; Hoyen HA; Hart RL; Nemunaitis GA; Peckham PH
    Top Spinal Cord Inj Rehabil; 2018; 24(3):252-264. PubMed ID: 29997428
    [No Abstract]   [Full Text] [Related]  

  • 17. Altered corticospinal function during movement preparation in humans with spinal cord injury.
    Federico P; Perez MA
    J Physiol; 2017 Jan; 595(1):233-245. PubMed ID: 27485306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Research on the progress of neuroprosthesis for the limb motor system].
    Wan BK; Li J; Ming D
    Zhongguo Yi Liao Qi Xie Za Zhi; 2006 Jul; 30(4):235-40. PubMed ID: 17039925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel muscle patterns for reaching after cervical spinal cord injury: a case for motor redundancy.
    Koshland GF; Galloway JC; Farley B
    Exp Brain Res; 2005 Jul; 164(2):133-47. PubMed ID: 16028034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reticulospinal Contributions to Gross Hand Function after Human Spinal Cord Injury.
    Baker SN; Perez MA
    J Neurosci; 2017 Oct; 37(40):9778-9784. PubMed ID: 28871033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.