These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 22255307)
1. A hidden Markov model-based technique for gait segmentation using a foot-mounted gyroscope. Mannini A; Sabatini AM Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4369-73. PubMed ID: 22255307 [TBL] [Abstract][Full Text] [Related]
2. Gait phase detection and discrimination between walking-jogging activities using hidden Markov models applied to foot motion data from a gyroscope. Mannini A; Sabatini AM Gait Posture; 2012 Sep; 36(4):657-61. PubMed ID: 22796244 [TBL] [Abstract][Full Text] [Related]
3. Online decoding of hidden Markov models for gait event detection using foot-mounted gyroscopes. Mannini A; Genovese V; Maria Sabatini A IEEE J Biomed Health Inform; 2014 Jul; 18(4):1122-30. PubMed ID: 25014927 [TBL] [Abstract][Full Text] [Related]
4. Walking speed estimation using foot-mounted inertial sensors: comparing machine learning and strap-down integration methods. Mannini A; Sabatini AM Med Eng Phys; 2014 Oct; 36(10):1312-21. PubMed ID: 25199588 [TBL] [Abstract][Full Text] [Related]
5. Development and validation of an accelerometer-based method for quantifying gait events. Boutaayamou M; Schwartz C; Stamatakis J; Denoël V; Maquet D; Forthomme B; Croisier JL; Macq B; Verly JG; Garraux G; Brüls O Med Eng Phys; 2015 Feb; 37(2):226-32. PubMed ID: 25618221 [TBL] [Abstract][Full Text] [Related]
6. Gait Phase Detection for Lower-Limb Exoskeletons using Foot Motion Data from a Single Inertial Measurement Unit in Hemiparetic Individuals. Sánchez Manchola MD; Pinto Bernal MJ; Munera M; Cifuentes CA Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31284619 [TBL] [Abstract][Full Text] [Related]
7. Automatic identification of gait events during walking on uneven surfaces. Eckardt N; Kibele A Gait Posture; 2017 Feb; 52():83-86. PubMed ID: 27888695 [TBL] [Abstract][Full Text] [Related]
8. Assessment of walking features from foot inertial sensing. Sabatini AM; Martelloni C; Scapellato S; Cavallo F IEEE Trans Biomed Eng; 2005 Mar; 52(3):486-94. PubMed ID: 15759579 [TBL] [Abstract][Full Text] [Related]
9. Detection of gait cycles in treadmill walking using a Kinect. Auvinet E; Multon F; Aubin CE; Meunier J; Raison M Gait Posture; 2015 Feb; 41(2):722-5. PubMed ID: 25442670 [TBL] [Abstract][Full Text] [Related]
10. Gait Event Detection in Controlled and Real-Life Situations: Repeated Measures From Healthy Subjects. Figueiredo J; Felix P; Costa L; Moreno JC; Santos CP IEEE Trans Neural Syst Rehabil Eng; 2018 Oct; 26(10):1945-1956. PubMed ID: 30334739 [TBL] [Abstract][Full Text] [Related]
11. Validation of Inter-Subject Training for Hidden Markov Models Applied to Gait Phase Detection in Children with Cerebral Palsy. Taborri J; Scalona E; Palermo E; Rossi S; Cappa P Sensors (Basel); 2015 Sep; 15(9):24514-29. PubMed ID: 26404309 [TBL] [Abstract][Full Text] [Related]
12. Quantitative estimation of foot-flat and stance phase of gait using foot-worn inertial sensors. Mariani B; Rouhani H; Crevoisier X; Aminian K Gait Posture; 2013 Feb; 37(2):229-34. PubMed ID: 22877845 [TBL] [Abstract][Full Text] [Related]
13. Reproducibility of gait parameters at different surface inclinations and speeds using an instrumented treadmill system. Item-Glatthorn JF; Casartelli NC; Maffiuletti NA Gait Posture; 2016 Feb; 44():259-64. PubMed ID: 27004668 [TBL] [Abstract][Full Text] [Related]
14. Automated detection of instantaneous gait events using time frequency analysis and manifold embedding. Aung MS; Thies SB; Kenney LP; Howard D; Selles RW; Findlow AH; Goulermas JY IEEE Trans Neural Syst Rehabil Eng; 2013 Nov; 21(6):908-16. PubMed ID: 23322764 [TBL] [Abstract][Full Text] [Related]
15. HMM-Fuzzy model for recognition of gait changes due to trip-related falls. Hassan R; Begg R; Taylor S; Kumar DK Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1216-9. PubMed ID: 17945628 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of the performance of accelerometer-based gait event detection algorithms in different real-world scenarios using the MAREA gait database. Khandelwal S; Wickström N Gait Posture; 2017 Jan; 51():84-90. PubMed ID: 27736735 [TBL] [Abstract][Full Text] [Related]
17. Determination of toe-off event time during treadmill locomotion using kinematic data. De Witt JK J Biomech; 2010 Nov; 43(15):3067-9. PubMed ID: 20801452 [TBL] [Abstract][Full Text] [Related]
18. Focusing on heel strike improves toe clearance in people with Parkinson's disease: an observational pilot study. Ginis P; Pirani R; Basaia S; Ferrari A; Chiari L; Heremans E; Canning CG; Nieuwboer A Physiotherapy; 2017 Dec; 103(4):485-490. PubMed ID: 28784427 [TBL] [Abstract][Full Text] [Related]
19. The generation of centripetal force when walking in a circle: insight from the distribution of ground reaction forces recorded by plantar insoles. Turcato AM; Godi M; Giordano A; Schieppati M; Nardone A J Neuroeng Rehabil; 2015 Jan; 12(1):4. PubMed ID: 25576354 [TBL] [Abstract][Full Text] [Related]
20. Assessment of Foot Trajectory for Human Gait Phase Detection Using Wireless Ultrasonic Sensor Network. Qi Y; Soh CB; Gunawan E; Low KS; Thomas R IEEE Trans Neural Syst Rehabil Eng; 2016 Jan; 24(1):88-97. PubMed ID: 25769165 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]