These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 22255360)

  • 1. Dynamic Brain-Machine Interface: a novel paradigm for bidirectional interaction between brains and dynamical systems.
    Szymanski FD; Semprini M; Mussa-Ivaldi FA; Fadiga L; Panzeri S; Vato A
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4592-5. PubMed ID: 22255360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shaping the dynamics of a bidirectional neural interface.
    Vato A; Semprini M; Maggiolini E; Szymanski FD; Fadiga L; Panzeri S; Mussa-Ivaldi FA
    PLoS Comput Biol; 2012; 8(7):e1002578. PubMed ID: 22829754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A non-linear mapping algorithm shaping the control policy of a bidirectional brain machine interface.
    Boi F; Semprini M; Vato A
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3052-3055. PubMed ID: 28268955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A bidirectional brain-machine interface algorithm that approximates arbitrary force-fields.
    Vato A; Szymanski FD; Semprini M; Mussa-Ivaldi FA; Panzeri S
    PLoS One; 2014; 9(3):e91677. PubMed ID: 24626393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A bidirectional brain-machine interface connecting alert rodents to a dynamical system.
    Boi F; Semprini M; Mussa Ivaldi FA; Panzeri S; Vato A
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():51-4. PubMed ID: 26736198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new full closed-loop brain-machine interface approach based on neural activity: A study based on modeling and experimental studies.
    Amiri M; Nazari S; Jafari AH; Makkiabadi B
    Heliyon; 2023 Mar; 9(3):e13766. PubMed ID: 36851970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. State-Dependent Decoding Algorithms Improve the Performance of a Bidirectional BMI in Anesthetized Rats.
    De Feo V; Boi F; Safaai H; Onken A; Panzeri S; Vato A
    Front Neurosci; 2017; 11():269. PubMed ID: 28620273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New Perspectives on the Dialogue between Brains and Machines.
    Mussa-Ivaldi FA; Alford ST; Chiappalone M; Fadiga L; Karniel A; Kositsky M; Maggiolini E; Panzeri S; Sanguineti V; Semprini M; Vato A
    Front Neurosci; 2010 Apr; 4():44. PubMed ID: 20589094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Bidirectional Brain-Machine Interface Featuring a Neuromorphic Hardware Decoder.
    Boi F; Moraitis T; De Feo V; Diotalevi F; Bartolozzi C; Indiveri G; Vato A
    Front Neurosci; 2016; 10():563. PubMed ID: 28018162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implantable neurotechnologies: bidirectional neural interfaces--applications and VLSI circuit implementations.
    Greenwald E; Masters MR; Thakor NV
    Med Biol Eng Comput; 2016 Jan; 54(1):1-17. PubMed ID: 26753776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defining brain-machine interface applications by matching interface performance with device requirements.
    Tonet O; Marinelli M; Citi L; Rossini PM; Rossini L; Megali G; Dario P
    J Neurosci Methods; 2008 Jan; 167(1):91-104. PubMed ID: 17499364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational analysis in vitro: dynamics and plasticity of a neuro-robotic system.
    Karniel A; Kositsky M; Fleming KM; Chiappalone M; Sanguineti V; Alford ST; Mussa-Ivaldi FA
    J Neural Eng; 2005 Sep; 2(3):S250-65. PubMed ID: 16135888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Complete Brain-machine Interfaces and Plastic Changes in the Brain].
    Sakurai Y
    Brain Nerve; 2010 Oct; 62(10):1059-65. PubMed ID: 20940505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain-machine interface facilitated neurorehabilitation via spinal stimulation after spinal cord injury: Recent progress and future perspectives.
    Alam M; Rodrigues W; Pham BN; Thakor NV
    Brain Res; 2016 Sep; 1646():25-33. PubMed ID: 27216571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active tactile exploration using a brain-machine-brain interface.
    O'Doherty JE; Lebedev MA; Ifft PJ; Zhuang KZ; Shokur S; Bleuler H; Nicolelis MA
    Nature; 2011 Oct; 479(7372):228-31. PubMed ID: 21976021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A symbiotic brain-machine interface through value-based decision making.
    Mahmoudi B; Sanchez JC
    PLoS One; 2011 Mar; 6(3):e14760. PubMed ID: 21423797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards a non-invasive brain-machine interface system to restore gait function in humans.
    Presacco A; Forrester L; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4588-91. PubMed ID: 22255359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural interfaces for the brain and spinal cord--restoring motor function.
    Jackson A; Zimmermann JB
    Nat Rev Neurol; 2012 Dec; 8(12):690-9. PubMed ID: 23147846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activities on PNS neural interfaces for the control of hand prostheses.
    Carpaneto J; Cutrone A; Bossi S; Sergi P; Citi L; Rigosa J; Rossini PM; Micera S
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4637-40. PubMed ID: 22255371
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.