These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 22255362)

  • 21. The Berlin Brain--Computer Interface: accurate performance from first-session in BCI-naïve subjects.
    Blankertz B; Losch F; Krauledat M; Dornhege G; Curio G; Müller KR
    IEEE Trans Biomed Eng; 2008 Oct; 55(10):2452-62. PubMed ID: 18838371
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electroencephalography (EEG)-based brain-computer interface (BCI): a 2-D virtual wheelchair control based on event-related desynchronization/synchronization and state control.
    Huang D; Qian K; Fei DY; Jia W; Chen X; Bai O
    IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):379-88. PubMed ID: 22498703
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Cross-Subject SSVEP-BCI Based on Task Related Component Analysis.
    Liu W; Ke Y; Liu P; Du J; Kong L; Liu S; An X; Ming D
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3022-3025. PubMed ID: 31946525
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Long-Term Mutual Training for the CYBATHLON BCI Race With a Tetraplegic Pilot: A Case Study on Inter-Session Transfer and Intra-Session Adaptation.
    Hehenberger L; Kobler RJ; Lopes-Dias C; Srisrisawang N; Tumfart P; Uroko JB; Torke PR; Müller-Putz GR
    Front Hum Neurosci; 2021; 15():635777. PubMed ID: 33716698
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A large clinical study on the ability of stroke patients to use an EEG-based motor imagery brain-computer interface.
    Ang KK; Guan C; Chua KS; Ang BT; Kuah CW; Wang C; Phua KS; Chin ZY; Zhang H
    Clin EEG Neurosci; 2011 Oct; 42(4):253-8. PubMed ID: 22208123
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Brain-computer interface research comes of age: traditional assumptions meet emerging realities.
    Wolpaw JR
    J Mot Behav; 2010 Nov; 42(6):351-3. PubMed ID: 21184352
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Brain-computer interfaces as new brain output pathways.
    Wolpaw JR
    J Physiol; 2007 Mar; 579(Pt 3):613-9. PubMed ID: 17255164
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improving session-to-session transfer performance of motor imagery-based BCI using Adaptive Extreme Learning Machine.
    Bamdadian A; Guan C; Ang KK; Xu J
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2188-91. PubMed ID: 24110156
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nonstationary brain source separation for multiclass motor imagery.
    Gouy-Pailler C; Congedo M; Brunner C; Jutten C; Pfurtscheller G
    IEEE Trans Biomed Eng; 2010 Feb; 57(2):469-78. PubMed ID: 19789106
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CSP-TSM: Optimizing the performance of Riemannian tangent space mapping using common spatial pattern for MI-BCI.
    Kumar S; Mamun K; Sharma A
    Comput Biol Med; 2017 Dec; 91():231-242. PubMed ID: 29100117
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Towards zero training for brain-computer interfacing.
    Krauledat M; Tangermann M; Blankertz B; Müller KR
    PLoS One; 2008 Aug; 3(8):e2967. PubMed ID: 18698427
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A motor imagery based brain-computer interface for stroke rehabilitation.
    Ortner R; Irimia DC; Scharinger J; Guger C
    Stud Health Technol Inform; 2012; 181():319-23. PubMed ID: 22954880
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Co-adaptive Training Improves Efficacy of a Multi-Day EEG-Based Motor Imagery BCI Training.
    Abu-Rmileh A; Zakkay E; Shmuelof L; Shriki O
    Front Hum Neurosci; 2019; 13():362. PubMed ID: 31680914
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimizing spatial patterns with sparse filter bands for motor-imagery based brain-computer interface.
    Zhang Y; Zhou G; Jin J; Wang X; Cichocki A
    J Neurosci Methods; 2015 Nov; 255():85-91. PubMed ID: 26277421
    [TBL] [Abstract][Full Text] [Related]  

  • 35. User's Self-Prediction of Performance in Motor Imagery Brain-Computer Interface.
    Ahn M; Cho H; Ahn S; Jun SC
    Front Hum Neurosci; 2018; 12():59. PubMed ID: 29497370
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evidence of Variabilities in EEG Dynamics During Motor Imagery-Based Multiclass Brain-Computer Interface.
    Saha S; Ahmed KIU; Mostafa R; Hadjileontiadis L; Khandoker A
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):371-382. PubMed ID: 29432108
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A hybrid brain computer interface system based on the neurophysiological protocol and brain-actuated switch for wheelchair control.
    Cao L; Li J; Ji H; Jiang C
    J Neurosci Methods; 2014 May; 229():33-43. PubMed ID: 24713576
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Toward BCI Wizard - best BCI approach for each user.
    Volosyak I; Guger C; Graser A
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4201-4. PubMed ID: 21096893
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Wearable Channel Selection-Based Brain-Computer Interface for Motor Imagery Detection.
    Lo CC; Chien TY; Chen YC; Tsai SH; Fang WC; Lin BS
    Sensors (Basel); 2016 Feb; 16(2):213. PubMed ID: 26861347
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A high performance sensorimotor beta rhythm-based brain-computer interface associated with human natural motor behavior.
    Bai O; Lin P; Vorbach S; Floeter MK; Hattori N; Hallett M
    J Neural Eng; 2008 Mar; 5(1):24-35. PubMed ID: 18310808
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.