These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 22255371)

  • 21. Embedded System for Prosthetic Control Using Implanted Neuromuscular Interfaces Accessed Via an Osseointegrated Implant.
    Mastinu E; Doguet P; Botquin Y; Hakansson B; Ortiz-Catalan M
    IEEE Trans Biomed Circuits Syst; 2017 Aug; 11(4):867-877. PubMed ID: 28541915
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Robust simultaneous myoelectric control of multiple degrees of freedom in wrist-hand prostheses by real-time neuromusculoskeletal modeling.
    Sartori M; Durandau G; Došen S; Farina D
    J Neural Eng; 2018 Dec; 15(6):066026. PubMed ID: 30229745
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Brain-machine interfaces: past, present and future.
    Lebedev MA; Nicolelis MA
    Trends Neurosci; 2006 Sep; 29(9):536-46. PubMed ID: 16859758
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Controlling a virtual forehand prosthesis using an adaptive and affective Human-Machine Interface.
    Rezazadeh IM; Firoozabadi SM; Golpayegani SM; Hu H
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4128-31. PubMed ID: 22255248
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Control of hand prostheses using peripheral information.
    Micera S; Carpaneto J; Raspopovic S
    IEEE Rev Biomed Eng; 2010; 3():48-68. PubMed ID: 22275201
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interfaces with the peripheral nerve for the control of neuroprostheses.
    del Valle J; Navarro X
    Int Rev Neurobiol; 2013; 109():63-83. PubMed ID: 24093606
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Residual motor signal in long-term human severed peripheral nerves and feasibility of neural signal-controlled artificial limb.
    Jia X; Koenig MA; Zhang X; Zhang J; Chen T; Chen Z
    J Hand Surg Am; 2007; 32(5):657-66. PubMed ID: 17482005
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Implantable neurotechnologies: a review of micro- and nanoelectrodes for neural recording.
    Patil AC; Thakor NV
    Med Biol Eng Comput; 2016 Jan; 54(1):23-44. PubMed ID: 26753777
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neural prostheses in clinical practice: biomedical microsystems in neurological rehabilitation.
    Stieglitz T
    Acta Neurochir Suppl; 2007; 97(Pt 1):411-8. PubMed ID: 17691404
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Micro-channel sieve electrode for concurrent bidirectional peripheral nerve interface. Part A: recording.
    Coker RA; Zellmer ER; Moran DW
    J Neural Eng; 2019 Apr; 16(2):026001. PubMed ID: 30524005
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Decoding of grasping tasks from intraneural recordings in trans-radial amputee.
    Cracchiolo M; Valle G; Petrini F; Strauss I; Granata G; Stieglitz T; Rossini PM; Raspopovic S; Mazzoni A; Micera S
    J Neural Eng; 2020 Apr; 17(2):026034. PubMed ID: 32207409
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Local-learning-based neuron selection for grasping gesture prediction in motor brain machine interfaces.
    Xu K; Wang Y; Wang Y; Wang F; Hao Y; Zhang S; Zhang Q; Chen W; Zheng X
    J Neural Eng; 2013 Apr; 10(2):026008. PubMed ID: 23428877
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamic Brain-Machine Interface: a novel paradigm for bidirectional interaction between brains and dynamical systems.
    Szymanski FD; Semprini M; Mussa-Ivaldi FA; Fadiga L; Panzeri S; Vato A
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4592-5. PubMed ID: 22255360
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neural control of motor prostheses.
    Scherberger H
    Curr Opin Neurobiol; 2009 Dec; 19(6):629-33. PubMed ID: 19896364
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intrafascicular thin-film multichannel electrodes for sensory feedback: Evidences on a human amputee.
    Benvenuto A; Raspopovic S; Hoffmann KP; Carpaneto J; Cavallo G; Di Pino G; Guglielmelli E; Rossini L; Rossini PM; Tombini M; Micera S
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1800-3. PubMed ID: 21095936
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Micro-channel sieve electrode for concurrent bidirectional peripheral nerve interface. Part B: stimulation.
    Coker RA; Zellmer ER; Moran DW
    J Neural Eng; 2019 Apr; 16(2):026002. PubMed ID: 30524078
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interfacing the body's own sensing receptors into neural prosthesis devices.
    Haugland M; Sinkjaer T
    Technol Health Care; 1999; 7(6):393-9. PubMed ID: 10665672
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A multi-modal approach for hand motion classification using surface EMG and accelerometers.
    Fougner A; Scheme E; Chan AD; Englehart K; Stavdahl Ø
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4247-50. PubMed ID: 22255277
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On Muscle Selection for EMG Based Decoding of Dexterous, In-Hand Manipulation Motions.
    Kwon Y; Dwivedi A; McDaid AJ; Liarokapis M
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1672-1675. PubMed ID: 30440716
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neuroplasticity in amputees: main implications on bidirectional interfacing of cybernetic hand prostheses.
    Di Pino G; Guglielmelli E; Rossini PM
    Prog Neurobiol; 2009 Jun; 88(2):114-26. PubMed ID: 19482228
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.