These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 22255373)

  • 1. A framework for the discrimination of neural pathways using multi-contact nerve cuff electrodes.
    Zariffa J; Nagai MK; Schuettler M; Stieglitz T; Daskalakis ZJ; Popovic MR
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4645-8. PubMed ID: 22255373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of an experimentally derived leadfield in the peripheral nerve pathway discrimination problem.
    Zariffa J; Nagai MK; Schuettler M; Stieglitz T; Daskalakis ZJ; Popovic MR
    IEEE Trans Neural Syst Rehabil Eng; 2011 Apr; 19(2):147-56. PubMed ID: 21075737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective peripheral nerve recordings from nerve cuff electrodes using convolutional neural networks.
    Koh RGL; Balas M; Nachman AI; Zariffa J
    J Neural Eng; 2020 Jan; 17(1):016042. PubMed ID: 31581142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compensation Strategies for Bioelectric Signal Changes in Chronic Selective Nerve Cuff Recordings: A Simulation Study.
    Sammut S; Koh RGL; Zariffa J
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33445808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classification of naturally evoked compound action potentials in peripheral nerve spatiotemporal recordings.
    Koh RGL; Nachman AI; Zariffa J
    Sci Rep; 2019 Jul; 9(1):11145. PubMed ID: 31366940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment on selectivity of multi-contact cuff electrode for recording peripheral nerve signals using Fitzhugh-Nagumo model of nerve excitation.
    Taghipour-Farshi H; Frounchi J; Ahmadiasl N; Shahabi P; Salekzamani Y
    J Back Musculoskelet Rehabil; 2016 Nov; 29(4):749-756. PubMed ID: 26966830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of EEG source localization algorithms to the monitoring of active pathways in peripheral nerves.
    Zariffa J; Popovic MR
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4216-9. PubMed ID: 19163642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of Encapsulation Tissue Growth on Selective Recording in Nerve Cuff Electrodes: A Simulation Study.
    Sammut S; Koh RGL; Zariffa J
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3444-3447. PubMed ID: 33018744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recovery of neural activity from nerve cuff electrodes.
    Wodlinger B; Durand DM
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4653-6. PubMed ID: 22255375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Velocity-selective recording from frog nerve using a multi-contact cuff electrode.
    Schuettler M; Seetohul V; Taylor J; Donaldson N
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2962-5. PubMed ID: 17945748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of spatiotemporal templates for pathway discrimination in peripheral nerve recordings: a simulation study.
    Koh RG; Nachman AI; Zariffa J
    J Neural Eng; 2017 Feb; 14(1):016013. PubMed ID: 28000616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of Anatomical Detail and Tissue Conductivity Variations in Simulations of Multi-Contact Nerve Cuff Recordings.
    Garai P; Koh RGL; Schuettler M; Stieglitz T; Zariffa J
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1653-1662. PubMed ID: 27898383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of High Contact-Density, Flat-Interface Nerve Electrodes for Recording and Stimulation Applications.
    Dweiri YM; Stone MA; Tyler DJ; McCallum GA; Durand DM
    J Vis Exp; 2016 Oct; (116):. PubMed ID: 27768048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multifunctional hydrogel coatings on the surface of neural cuff electrode for improving electrode-nerve tissue interfaces.
    Heo DN; Song SJ; Kim HJ; Lee YJ; Ko WK; Lee SJ; Lee D; Park SJ; Zhang LG; Kang JY; Do SH; Lee SH; Kwon IK
    Acta Biomater; 2016 Jul; 39():25-33. PubMed ID: 27163406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative analysis of transverse intrafascicular multichannel, longitudinal intrafascicular and multipolar cuff electrodes for the selective stimulation of nerve fascicles.
    Badia J; Boretius T; Andreu D; Azevedo-Coste C; Stieglitz T; Navarro X
    J Neural Eng; 2011 Jun; 8(3):036023. PubMed ID: 21558601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural engineering--a new discipline for analyzing and interacting with the nervous system.
    Durand DM
    Methods Inf Med; 2007; 46(2):142-6. PubMed ID: 17347744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultra-low noise miniaturized neural amplifier with hardware averaging.
    Dweiri YM; Eggers T; McCallum G; Durand DM
    J Neural Eng; 2015 Aug; 12(4):046024. PubMed ID: 26083774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Velocity Selective Recording: A Demonstration of Effectiveness on the Vagus Nerve in Pig.
    Metcalfe B; Nielsen T; Taylor J
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1-4. PubMed ID: 30440281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimizing the design of bipolar nerve cuff electrodes for improved recording of peripheral nerve activity.
    Sabetian P; Popovic MR; Yoo PB
    J Neural Eng; 2017 Jun; 14(3):036015. PubMed ID: 28251960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ankle-Angle Estimation from Blind Source Separated Afferent Activity in the Sciatic Nerve for Closed-Loop Functional Neuromuscular Stimulation System.
    Song KI; Chu JU; Park SE; Hwang D; Youn I
    IEEE Trans Biomed Eng; 2017 Apr; 64(4):834-843. PubMed ID: 27323354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.