BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 22255380)

  • 1. Metabolic control analysis applied to mitochondrial networks.
    Cortassa S; Aon MA; O'Rourke B; Winslow RL
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4673-6. PubMed ID: 22255380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control and regulation of integrated mitochondrial function in metabolic and transport networks.
    Cortassa S; O'Rourke B; Winslow RL; Aon MA
    Int J Mol Sci; 2009 Apr; 10(4):1500-1513. PubMed ID: 19468321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical modelling of the effects of cold atmospheric plasma on mitochondrial redox homeostasis and energy metabolism.
    Murakami T
    Sci Rep; 2019 Nov; 9(1):17138. PubMed ID: 31748630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial energetic metabolism-some general principles.
    Mazat JP; Ransac S; Heiske M; Devin A; Rigoulet M
    IUBMB Life; 2013 Mar; 65(3):171-9. PubMed ID: 23441039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An in situ study of bioenergetic properties of human colorectal cancer: the regulation of mitochondrial respiration and distribution of flux control among the components of ATP synthasome.
    Kaldma A; Klepinin A; Chekulayev V; Mado K; Shevchuk I; Timohhina N; Tepp K; Kandashvili M; Varikmaa M; Koit A; Planken M; Heck K; Truu L; Planken A; Valvere V; Rebane E; Kaambre T
    Int J Biochem Cell Biol; 2014 Oct; 55():171-86. PubMed ID: 25218857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mathematical modeling of mitochondrial energy transduction.
    Bohnensack R
    Biomed Biochim Acta; 1985; 44(6):853-62. PubMed ID: 2931077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial energetic metabolism: a simplified model of TCA cycle with ATP production.
    Nazaret C; Heiske M; Thurley K; Mazat JP
    J Theor Biol; 2009 Jun; 258(3):455-64. PubMed ID: 19007794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energetic aspects of transport of ADP and ATP through the mitochondrial membrane.
    Klingenberg M
    Ciba Found Symp; 1975; (31):105-24. PubMed ID: 238804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ADP and ATP transport in mitochondria and its carrier.
    Klingenberg M
    Biochim Biophys Acta; 2008 Oct; 1778(10):1978-2021. PubMed ID: 18510943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The effect of p-chloromercuribenzoate on regulation of oxidative phosphorylation by ADP and ATP and stimulation of liver mitochondrial respiration by palmitate].
    Samartsev VN; Zeldi IP; Smirnov AV
    Biokhimiia; 1995 Oct; 60(10):1706-10. PubMed ID: 8555366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficiency of oxidative phosphorylation and energy dissipation by H+ ion recycling in rat-liver mitochondrial metabolizing pyruvate.
    Stucki JW
    Eur J Biochem; 1976 Sep; 68(2):551-62. PubMed ID: 10160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mathematical simulation of membrane processes and metabolic fluxes of the pancreatic beta-cell.
    Diederichs F
    Bull Math Biol; 2006 Oct; 68(7):1779-818. PubMed ID: 16832733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The dynamic regulation of myocardial oxidative phosphorylation: analysis of the response time of oxygen consumption.
    van Beek JH; Tian X; Zuurbier CJ; de Groot B; van Echteld CJ; Eijgelshoven MH; Hak JB
    Mol Cell Biochem; 1998 Jul; 184(1-2):321-44. PubMed ID: 9746328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control and regulation of mitochondrial energetics in an integrated model of cardiomyocyte function.
    Cortassa S; O'Rourke B; Winslow RL; Aon MA
    Biophys J; 2009 Mar; 96(6):2466-78. PubMed ID: 19289071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of active elementary flux modes in mitochondria using selectively permeabilized CHO cells.
    Nicolae A; Wahrheit J; Nonnenmacher Y; Weyler C; Heinzle E
    Metab Eng; 2015 Nov; 32():95-105. PubMed ID: 26417715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling of oxygen transport and cellular energetics explains observations on in vivo cardiac energy metabolism.
    Beard DA
    PLoS Comput Biol; 2006 Sep; 2(9):e107. PubMed ID: 16978045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Factors determining the relative contribution of the adenine-nucleotide translocator and the ADP-regenerating system to the control of oxidative phosphorylation in isolated rat-liver mitochondria.
    Wanders RJ; Groen AK; Van Roermund CW; Tager JM
    Eur J Biochem; 1984 Jul; 142(2):417-24. PubMed ID: 6086353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The cellular and compartmental profile of mouse retinal glycolysis, tricarboxylic acid cycle, oxidative phosphorylation, and ~P transferring kinases.
    Rueda EM; Johnson JE; Giddabasappa A; Swaroop A; Brooks MJ; Sigel I; Chaney SY; Fox DA
    Mol Vis; 2016; 22():847-85. PubMed ID: 27499608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An integrated model of cardiac mitochondrial energy metabolism and calcium dynamics.
    Cortassa S; Aon MA; Marbán E; Winslow RL; O'Rourke B
    Biophys J; 2003 Apr; 84(4):2734-55. PubMed ID: 12668482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship of potassium ion transport and ATP synthesis in pea cotyledon mitochondria.
    Hamman WM; Spencer M
    Can J Biochem; 1977 Apr; 55(4):376-83. PubMed ID: 858087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.