These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 22255509)

  • 21. Effects of Vibrotactile Biofeedback Coding Schemes on Gait Symmetry Training of Individuals With Stroke.
    Afzal MR; Lee H; Eizad A; Lee CH; Oh MK; Yoon J
    IEEE Trans Neural Syst Rehabil Eng; 2019 Aug; 27(8):1617-1625. PubMed ID: 31247557
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stepping training with external feedback relating to lower limb support ability effectively improved complex motor activity in ambulatory patients with stroke: a randomized controlled trial.
    Phonthee S; Amatachaya P; Sooknuan T; Amatachaya S
    Eur J Phys Rehabil Med; 2020 Feb; 56(1):14-23. PubMed ID: 31615197
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Changes in gait and plantar foot loading upon using vibrotactile wearable biofeedback system in patients with stroke.
    Ma CZ; Zheng YP; Lee WC
    Top Stroke Rehabil; 2018 Jan; 25(1):20-27. PubMed ID: 28950803
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influences of the biofeedback content on robotic post-stroke gait rehabilitation: electromyographic vs joint torque biofeedback.
    Tamburella F; Moreno JC; Herrera Valenzuela DS; Pisotta I; Iosa M; Cincotti F; Mattia D; Pons JL; Molinari M
    J Neuroeng Rehabil; 2019 Jul; 16(1):95. PubMed ID: 31337400
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Real-time foot clearance biofeedback to assist gait rehabilitation following stroke: a randomized controlled trial protocol.
    Begg R; Galea MP; James L; Sparrow WAT; Levinger P; Khan F; Said CM
    Trials; 2019 May; 20(1):317. PubMed ID: 31151480
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gait deviations associated with post-stroke hemiparesis: improvement during treadmill walking using weight support, speed, support stiffness, and handrail hold.
    Chen G; Patten C; Kothari DH; Zajac FE
    Gait Posture; 2005 Aug; 22(1):57-62. PubMed ID: 15996593
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of gait training with auditory feedback on walking and balancing ability in adults after hemiplegic stroke: a preliminary, randomized, controlled study.
    Cha YJ; Kim JD; Choi YR; Kim NH; Son SM
    Int J Rehabil Res; 2018 Sep; 41(3):239-243. PubMed ID: 29782407
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Insole sensor system for real-time detection of biped slip.
    Lincoln LS; Bamberg SJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1449-52. PubMed ID: 21096354
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Circuit-based rehabilitation improves gait endurance but not usual walking activity in chronic stroke: a randomized controlled trial.
    Mudge S; Barber PA; Stott NS
    Arch Phys Med Rehabil; 2009 Dec; 90(12):1989-96. PubMed ID: 19969159
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Virtual reality feedback for gait improvement in patients with idiopathic senile gait disorders and patients with history of stroke.
    Baram Y; Aharon-Peretz J; Lenger R
    J Am Geriatr Soc; 2010 Jan; 58(1):191-2. PubMed ID: 20122062
    [No Abstract]   [Full Text] [Related]  

  • 31. The effects of walking sticks on gait kinematics and kinetics with chronic stroke survivors.
    Polese JC; Teixeira-Salmela LF; Nascimento LR; Faria CD; Kirkwood RN; Laurentino GC; Ada L
    Clin Biomech (Bristol, Avon); 2012 Feb; 27(2):131-7. PubMed ID: 21889240
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Feedback system based on plantar pressure for monitoring toe-walking strides in children with cerebral palsy.
    Pu F; Fan X; Yang Y; Chen W; Li S; Li D; Fan Y
    Am J Phys Med Rehabil; 2014 Feb; 93(2):122-9. PubMed ID: 24434888
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-intensity treadmill training improves gait ability, VO2peak and cost of walking in stroke survivors: preliminary results of a pilot randomized controlled trial.
    Munari D; Pedrinolla A; Smania N; Picelli A; Gandolfi M; Saltuari L; Schena F
    Eur J Phys Rehabil Med; 2018 Jun; 54(3):408-418. PubMed ID: 27575015
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Obstacle crossing following stroke improves over one month when the unaffected limb leads, but not when the affected limb leads.
    Said CM; Galea M; Lythgo N
    Gait Posture; 2014 Jan; 39(1):213-7. PubMed ID: 23916414
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A randomized controlled trial on providing ankle-foot orthoses in patients with (sub-)acute stroke: Short-term kinematic and spatiotemporal effects and effects of timing.
    Nikamp CDM; Hobbelink MSH; van der Palen J; Hermens HJ; Rietman JS; Buurke JH
    Gait Posture; 2017 Jun; 55():15-22. PubMed ID: 28407505
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of a wearable exoskeleton stride management assist system (SMA®) on spatiotemporal gait characteristics in individuals after stroke: a randomized controlled trial.
    Buesing C; Fisch G; O'Donnell M; Shahidi I; Thomas L; Mummidisetty CK; Williams KJ; Takahashi H; Rymer WZ; Jayaraman A
    J Neuroeng Rehabil; 2015 Aug; 12():69. PubMed ID: 26289955
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of different designs of ankle-foot orthoses on gait in patients with stroke: A systematic review.
    Daryabor A; Arazpour M; Aminian G
    Gait Posture; 2018 May; 62():268-279. PubMed ID: 29587246
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design and Validation of a Biofeedback Device to Improve Heel-to-Toe Gait in Seniors.
    Vadnerkar A; Figueiredo S; Mayo NE; Kearney RE
    IEEE J Biomed Health Inform; 2018 Jan; 22(1):140-146. PubMed ID: 28186914
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wearable Sensor-Based Biofeedback Training for Balance and Gait in Parkinson Disease: A Pilot Randomized Controlled Trial.
    Carpinella I; Cattaneo D; Bonora G; Bowman T; Martina L; Montesano A; Ferrarin M
    Arch Phys Med Rehabil; 2017 Apr; 98(4):622-630.e3. PubMed ID: 27965005
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Embedded capacitive sensor system for hip surgery rehabilitation: online measurements and long-term stability.
    Salpavaara TJ; Verho JA; Lekkala JO; Halttunen JE
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():935-8. PubMed ID: 19162811
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.