BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 22255546)

  • 1. Investigating tactile event recognition in child-robot interaction for use in autism therapy.
    Amirabdollahian F; Robins B; Dautenhahn K; Ji Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5347-51. PubMed ID: 22255546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An affordable compact humanoid robot for Autism Spectrum Disorder interventions in children.
    Dickstein-Fischer L; Alexander E; Yan X; Su H; Harrington K; Fischer GS
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5319-22. PubMed ID: 22255539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feasibility study of a randomised controlled trial to investigate the effectiveness of using a humanoid robot to improve the social skills of children with autism spectrum disorder (Kaspar RCT): a study protocol.
    Mengoni SE; Irvine K; Thakur D; Barton G; Dautenhahn K; Guldberg K; Robins B; Wellsted D; Sharma S
    BMJ Open; 2017 Jun; 7(6):e017376. PubMed ID: 28645986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A step towards developing adaptive robot-mediated intervention architecture (ARIA) for children with autism.
    Bekele ET; Lahiri U; Swanson AR; Crittendon JA; Warren ZE; Sarkar N
    IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):289-99. PubMed ID: 23221831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Building Robota, a mini-humanoid robot for the rehabilitation of children with autism.
    Billard A; Robins B; Nadel J; Dautenhahn K
    Assist Technol; 2007; 19(1):37-49. PubMed ID: 17461289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multimodal interactions in free game play of children with autism and a mobile toy robot.
    Giannopulu I; Pradel G
    NeuroRehabilitation; 2010; 27(4):305-11. PubMed ID: 21160119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control architecture for human-robot integration: application to a robotic wheelchair.
    Galindo C; Gonzalez J; Fernández-Madrigal JA
    IEEE Trans Syst Man Cybern B Cybern; 2006 Oct; 36(5):1053-67. PubMed ID: 17036812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An android for enhancing social skills and emotion recognition in people with autism.
    Pioggia G; Igliozzi R; Ferro M; Ahluwalia A; Muratori F; De Rossi D
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):507-15. PubMed ID: 16425833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial Calibration of Humanoid Robot Flexible Tactile Skin for Human-Robot Interaction.
    Chefchaouni Moussaoui S; Cisneros-Limón R; Kaminaga H; Benallegue M; Nobeshima T; Kanazawa S; Kanehiro F
    Sensors (Basel); 2023 May; 23(9):. PubMed ID: 37177773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robots for use in autism research.
    Scassellati B; Admoni H; Matarić M
    Annu Rev Biomed Eng; 2012; 14():275-94. PubMed ID: 22577778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct interaction with an assistive robot for individuals with chronic stroke.
    Kmetz B; Markham H; Brewer BR
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1264-7. PubMed ID: 22254546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soft artificial tactile sensors for the measurement of human-robot interaction in the rehabilitation of the lower limb.
    De Rossi SM; Vitiello N; Lenzi T; Ronsse R; Koopman B; Persichetti A; Giovacchini F; Vecchi F; Ijspeert AJ; van der Kooij H; Carrozza MC
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1279-82. PubMed ID: 21095918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a skin for intuitive interaction with an assistive robot.
    Markham HC; Brewer BR
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5969-72. PubMed ID: 19964885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of a compliantly actuated exo-skeleton for an impedance controlled gait trainer robot.
    van der Kooij H; Veneman J; Ekkelenkamp R
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():189-93. PubMed ID: 17946801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cybernetic rehabilitation aid: preliminary results for wrist and elbow motions in healthy subjects.
    Akdogan E; Shima K; Kataoka H; Hasegawa M; Otsuka A; Tsuji T
    IEEE Trans Neural Syst Rehabil Eng; 2012 Sep; 20(5):697-707. PubMed ID: 22695359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developing Kaspar: A Humanoid Robot for Children with Autism.
    Wood LJ; Zaraki A; Robins B; Dautenhahn K
    Int J Soc Robot; 2021; 13(3):491-508. PubMed ID: 34721730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supervisory controller design for a robot-assisted reach-to-grasp rehabilitation task.
    Wang F; Sarkar N
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4258-61. PubMed ID: 19163653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prototype tactile feedback system for examination by skin touch.
    Lee O; Lee K; Oh C; Kim K; Kim M
    Skin Res Technol; 2014 Aug; 20(3):307-14. PubMed ID: 24267404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated intelligent tactile system for a humanoid robot.
    Bao R; Tao J; Zhao J; Dong M; Li J; Pan C
    Sci Bull (Beijing); 2023 May; 68(10):1027-1037. PubMed ID: 37120379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A robotic voice simulator and the interactive training for hearing-impaired people.
    Sawada H; Kitani M; Hayashi Y
    J Biomed Biotechnol; 2008; 2008():768232. PubMed ID: 18389073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.