These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 22255558)
1. Flexible organic electronics for use in neural sensing. Bink H; Lai Y; Saudari SR; Helfer B; Viventi J; Van der Spiegel J; Litt B; Kagan C Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5400-3. PubMed ID: 22255558 [TBL] [Abstract][Full Text] [Related]
2. A compact architecture for three-dimensional neural microelectrode arrays. Perlin GE; Wise KD Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5806-9. PubMed ID: 19164037 [TBL] [Abstract][Full Text] [Related]
3. Flexible thin film electrode arrays for minimally-invasive neurological monitoring. Kim J; Richner TJ; Thongpang S; Sillay KA; Niemann DB; Ahmed AS; Krugner-Higby LA; Williams JC Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5506-9. PubMed ID: 19964122 [TBL] [Abstract][Full Text] [Related]
4. A transparent organic transistor structure for bidirectional stimulation and recording of primary neurons. Benfenati V; Toffanin S; Bonetti S; Turatti G; Pistone A; Chiappalone M; Sagnella A; Stefani A; Generali G; Ruani G; Saguatti D; Zamboni R; Muccini M Nat Mater; 2013 Jul; 12(7):672-80. PubMed ID: 23644524 [TBL] [Abstract][Full Text] [Related]
5. Versatile, modular 3D microelectrode arrays for neuronal ensemble recordings: from design to fabrication, assembly, and functional validation in non-human primates. Barz F; Livi A; Lanzilotto M; Maranesi M; Bonini L; Paul O; Ruther P J Neural Eng; 2017 Jun; 14(3):036010. PubMed ID: 28102825 [TBL] [Abstract][Full Text] [Related]
6. Active microelectronic neurosensor arrays for implantable brain communication interfaces. Song YK; Borton DA; Park S; Patterson WR; Bull CW; Laiwalla F; Mislow J; Simeral JD; Donoghue JP; Nurmikko AV IEEE Trans Neural Syst Rehabil Eng; 2009 Aug; 17(4):339-45. PubMed ID: 19502132 [TBL] [Abstract][Full Text] [Related]
7. Band-tunable and multiplexed integrated circuits for simultaneous recording and stimulation with microelectrode arrays. Olsson RH; Buhl DL; Sirota AM; Buzsaki G; Wise KD IEEE Trans Biomed Eng; 2005 Jul; 52(7):1303-11. PubMed ID: 16041994 [TBL] [Abstract][Full Text] [Related]
8. An implantable integrated low-power amplifier-microelectrode array for Brain-Machine Interfaces. Patrick E; Sankar V; Rowe W; Sanchez JC; Nishida T Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1816-9. PubMed ID: 21095940 [TBL] [Abstract][Full Text] [Related]
9. Compact wireless neural recording system for small animals using silicon-based probe arrays. Ruther P; Holzhammer T; Herwik S; Rich PD; Dalley JW; Paul O; Holtzman T Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2284-7. PubMed ID: 22254797 [TBL] [Abstract][Full Text] [Related]
10. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Viventi J; Kim DH; Vigeland L; Frechette ES; Blanco JA; Kim YS; Avrin AE; Tiruvadi VR; Hwang SW; Vanleer AC; Wulsin DF; Davis K; Gelber CE; Palmer L; Van der Spiegel J; Wu J; Xiao J; Huang Y; Contreras D; Rogers JA; Litt B Nat Neurosci; 2011 Nov; 14(12):1599-605. PubMed ID: 22081157 [TBL] [Abstract][Full Text] [Related]
11. Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex. Suner S; Fellows MR; Vargas-Irwin C; Nakata GK; Donoghue JP IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):524-41. PubMed ID: 16425835 [TBL] [Abstract][Full Text] [Related]
12. In vivo validation of the electronic depth control probes. Dombovári B; Fiáth R; Kerekes BP; Tóth E; Wittner L; Horváth D; Seidl K; Herwik S; Torfs T; Paul O; Ruther P; Neves H; Ulbert I Biomed Tech (Berl); 2014 Aug; 59(4):283-9. PubMed ID: 24114890 [TBL] [Abstract][Full Text] [Related]
13. A low-cost, scalable, current-sensing digital headstage for high channel count μECoG. Trumpis M; Insanally M; Zou J; Elsharif A; Ghomashchi A; Sertac Artan N; Froemke RC; Viventi J J Neural Eng; 2017 Apr; 14(2):026009. PubMed ID: 28102827 [TBL] [Abstract][Full Text] [Related]
14. Development of a chipscale integrated microelectrode/microelectronic device for brain implantable neuroengineering applications. Song YK; Patterson WR; Bull CW; Beals J; Hwang N; Deangelis AP; Lay C; McKay JL; Nurmikko AV; Fellows MR; Simeral JD; Donoghue JP; Connors BW IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):220-6. PubMed ID: 16003903 [TBL] [Abstract][Full Text] [Related]
15. Chronic intracortical implantation of saccharose-coated flexible shaft electrodes into the cortex of rats. Hassler C; Guy J; Nietzschmann M; Staiger JF; Stieglitz T Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():644-7. PubMed ID: 22254391 [TBL] [Abstract][Full Text] [Related]
16. Interface and gate bias dependence responses of sensing organic thin-film transistors. Tanese MC; Fine D; Dodabalapur A; Torsi L Biosens Bioelectron; 2005 Nov; 21(5):782-8. PubMed ID: 16242618 [TBL] [Abstract][Full Text] [Related]
17. An optical microsystem for wireless neural recording. Wei P; Ziaie B Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5522-4. PubMed ID: 19964126 [TBL] [Abstract][Full Text] [Related]
18. Insertion of linear 8.4 μm diameter 16 channel carbon fiber electrode arrays for single unit recordings. Patel PR; Na K; Zhang H; Kozai TD; Kotov NA; Yoon E; Chestek CA J Neural Eng; 2015 Aug; 12(4):046009. PubMed ID: 26035638 [TBL] [Abstract][Full Text] [Related]
19. Electrocardiographic recording with conformable organic electrochemical transistor fabricated on resorbable bioscaffold. Campana A; Cramer T; Simon DT; Berggren M; Biscarini F Adv Mater; 2014 Jun; 26(23):3874-8. PubMed ID: 24644020 [No Abstract] [Full Text] [Related]
20. Highly stretchable transistors using a microcracked organic semiconductor. Chortos A; Lim J; To JW; Vosgueritchian M; Dusseault TJ; Kim TH; Hwang S; Bao Z Adv Mater; 2014 Jul; 26(25):4253-9. PubMed ID: 24740928 [No Abstract] [Full Text] [Related] [Next] [New Search]