BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 22255585)

  • 1. Photoplethysmographic variability analysis in critical care--current progress and future challenges.
    Chan GS; Middleton PM; Lovell NH
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5507-10. PubMed ID: 22255585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectral analysis of finger photoplethysmographic waveform variability in a model of mild to moderate haemorrhage.
    Middleton PM; Chan GS; O'Lone E; Steel E; Carroll R; Celler BG; Lovell NH
    J Clin Monit Comput; 2008 Oct; 22(5):343-53. PubMed ID: 18850282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fingertip photoplethysmographic waveform variability and systemic vascular resistance in intensive care unit patients.
    Middleton PM; Chan GS; Steel E; Malouf P; Critoph C; Flynn G; O'Lone E; Celler BG; Lovell NH
    Med Biol Eng Comput; 2011 Aug; 49(8):859-66. PubMed ID: 21340639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of high-risk acute coronary syndromes by spectral analysis of ear photoplethysmographic waveform variability.
    Middleton PM; Chan GS; Marr S; Celler BG; Lovell NH
    Physiol Meas; 2011 Aug; 32(8):1181-92. PubMed ID: 21709339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frequency spectrum analysis of finger photoplethysmographic waveform variability during haemodialysis.
    Javed F; Middleton PM; Malouf P; Chan GS; Savkin AV; Lovell NH; Steel E; Mackie J
    Physiol Meas; 2010 Sep; 31(9):1203-16. PubMed ID: 20664159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PPG delineator for real-time ubiquitous applications.
    Farooq U; Jang DG; Park JH; Park SH
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4582-5. PubMed ID: 21095800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection method to minimize variability in photoplethysmographic signals for timing-related measurement.
    Foo JY; Wilson SJ
    J Med Eng Technol; 2006; 30(2):93-6. PubMed ID: 16531348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using time-frequency analysis of the photoplethysmographic waveform to detect the withdrawal of 900 mL of blood.
    Scully CG; Selvaraj N; Romberg FW; Wardhan R; Ryan J; Florian JP; Silverman DG; Shelley KH; Chon KH
    Anesth Analg; 2012 Jul; 115(1):74-81. PubMed ID: 22543068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic detection of left ventricular ejection time from a finger photoplethysmographic pulse oximetry waveform: comparison with Doppler aortic measurement.
    Chan GS; Middleton PM; Celler BG; Wang L; Lovell NH
    Physiol Meas; 2007 Apr; 28(4):439-52. PubMed ID: 17395998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in the spectral powers of finger photoplethysmographic waveform variability in hemodialysis patients.
    Javed F; Chan GS; Middleton PM; Malouf P; Steel E; Savkin AV; Mackie J; Lovell NH
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3999-4002. PubMed ID: 19964090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The differences in waveform between photoplethysmography pulse wave and radial pulse wave in movement station.
    Li K; Zhang S; Yang L; Luo Z; Gu G
    Biomed Mater Eng; 2014; 24(6):2657-64. PubMed ID: 25226969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using the multi-parameter variability of photoplethysmographic signals to evaluate short-term cardiovascular regulation.
    Chen X; Liu N; Huang Y; Yun F; Wang J; Li J
    J Clin Monit Comput; 2015 Oct; 29(5):605-12. PubMed ID: 25408376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Respiratory physiology and the impact of different modes of ventilation on the photoplethysmographic waveform.
    Alian AA; Shelley KH
    Sensors (Basel); 2012; 12(2):2236-54. PubMed ID: 22438762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early detection of spontaneous blood loss using amplitude modulation of Photoplethysmogram.
    Selvaraj N; Scully CG; Shelley KH; Silverman DG; Chon KH
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5499-502. PubMed ID: 22255583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motion artefact reduction of the photoplethysmographic signal in pulse transit time measurement.
    Foo JY; Wilson SJ; Williams GR; Harris M; Cooper DM
    Australas Phys Eng Sci Med; 2004 Dec; 27(4):165-73. PubMed ID: 15712583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoplethysmography.
    Alian AA; Shelley KH
    Best Pract Res Clin Anaesthesiol; 2014 Dec; 28(4):395-406. PubMed ID: 25480769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel approach using time-frequency analysis of pulse-oximeter data to detect progressive hypovolemia in spontaneously breathing healthy subjects.
    Selvaraj N; Shelley KH; Silverman DG; Stachenfeld N; Galante N; Florian JP; Mendelson Y; Chon K
    IEEE Trans Biomed Eng; 2011 Aug; 58(8):. PubMed ID: 21518656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Algorithm for Real-Time Pulse Waveform Segmentation and Artifact Detection in Photoplethysmograms.
    Fischer C; Domer B; Wibmer T; Penzel T
    IEEE J Biomed Health Inform; 2017 Mar; 21(2):372-381. PubMed ID: 26780821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noninvasive monitoring by photoplethysmography.
    Sahni R
    Clin Perinatol; 2012 Sep; 39(3):573-83. PubMed ID: 22954270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motion Artifact Removal of Photoplethysmogram (PPG) Signal.
    Majeed IA; Jos S; Arora R; Choi K; Bae S
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5576-5580. PubMed ID: 31947119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.