These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 22255614)

  • 1. Introducing a modular activity monitoring system.
    Reiss A; Stricker D
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5621-4. PubMed ID: 22255614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating energy expenditure using body-worn accelerometers: a comparison of methods, sensors number and positioning.
    Altini M; Penders J; Vullers R; Amft O
    IEEE J Biomed Health Inform; 2015 Jan; 19(1):219-26. PubMed ID: 24691168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sport monitoring with smart wearable system.
    Perego P; Moltani A; Andreoni G
    Stud Health Technol Inform; 2012; 177():224-8. PubMed ID: 22942058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-accelerometer-based daily physical activity classification.
    Long X; Yin B; Aarts RM
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6107-10. PubMed ID: 19965261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Where to wear accelerometers to measure physical activity in people?
    Thaler-Kall K; Tusker F; Hermsdörfer J; Gorzelniak L; Horsch A
    Stud Health Technol Inform; 2013; 192():1045. PubMed ID: 23920819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A universal, accurate intensity-based classification of different physical activities using raw data of accelerometer.
    Vähä-Ypyä H; Vasankari T; Husu P; Suni J; Sievänen H
    Clin Physiol Funct Imaging; 2015 Jan; 35(1):64-70. PubMed ID: 24393233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of accelerometer orientation for activity recognition.
    Friedman A; Hajj Chehade N; Chien C; Pottie G
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2076-9. PubMed ID: 23366329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating intensity of physical activity: a comparison of wearable accelerometer and gyro sensors and 3 sensor locations.
    Pärkkä J; Ermes M; Antila K; van Gils M; Mänttäri A; Nieminen H
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1511-4. PubMed ID: 18002254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Change-of-state determination to recognize mobility activities using a BlackBerry smartphone.
    Wu HH; Lemaire ED; Baddour N
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5252-5. PubMed ID: 22255522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ZigBee-based wireless multi-sensor system for physical activity assessment.
    Mo L; Liu S; Gao RX; John D; Staudenmayer J; Freedson P
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():846-9. PubMed ID: 22254443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A computational framework for the standardization of motion analysis exploiting wearable inertial sensors.
    Turcato A; Ramat S
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4963-6. PubMed ID: 22255452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Capturing whole-body mobility of patients with Parkinson disease using inertial motion sensors: expected challenges and rewards.
    Rahimi F; Duval C; Jog M; Bee C; South A; Jog M; Edwards R; Boissy P
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5833-8. PubMed ID: 22255666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Objective measurement tools for the assessment of physical activity].
    Rosenbaum D
    Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz; 2012 Jan; 55(1):88-95. PubMed ID: 22286253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel approach to ambulatory assessment of human segmental orientation on a wearable sensor system.
    Liu K; Liu T; Shibata K; Inoue Y; Zheng R
    J Biomech; 2009 Dec; 42(16):2747-52. PubMed ID: 19748624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wearable data acquisition system of multimodal physiological signals for personal health care.
    Annus P; Samieipour A; Rist M; Ruiso I; Krivoshei A; Land R; Parve T; Min M
    Stud Health Technol Inform; 2013; 189():107-12. PubMed ID: 23739367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Foot worn inertial sensors for gait assessment and rehabilitation based on motorized shoes.
    Aminian K; Mariani B; Paraschiv-Ionescu A; Hoskovec C; Bula C; Penders J; Tacconi C; Marcellini F
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5820-3. PubMed ID: 22255663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ActimedARM - design of a wearable system to monitor daily actimetry.
    Noury N; Perriot B; Collet J; Grenier E; Cerny M; Massot B; McAdams E
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1851-4. PubMed ID: 24110071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tri-axial accelerometer analysis techniques for evaluating functional use of the extremities.
    Hurd WJ; Morrow MM; Kaufman KR
    J Electromyogr Kinesiol; 2013 Aug; 23(4):924-9. PubMed ID: 23642841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A low-power multi-modal body sensor network with application to epileptic seizure monitoring.
    Altini M; Del Din S; Patel S; Schachter S; Penders J; Bonato P
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1806-9. PubMed ID: 22254679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mobile energy expenditure tracking system based on heart rate and motion providing extra extensions for personalized care.
    Chen HH; Chen YH; Chen TC; Chen LG
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5256-9. PubMed ID: 22255523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.