BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 22255655)

  • 1. Noninvasive brain-computer interface driven hand orthosis.
    King CE; Wang PT; Mizuta M; Reinkensmeyer DJ; Do AH; Moromugi S; Nenadic Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5786-9. PubMed ID: 22255655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-paced operation of an SSVEP-Based orthosis with and without an imagery-based "brain switch:" a feasibility study towards a hybrid BCI.
    Pfurtscheller G; Solis-Escalante T; Ortner R; Linortner P; Müller-Putz GR
    IEEE Trans Neural Syst Rehabil Eng; 2010 Aug; 18(4):409-14. PubMed ID: 20144923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Mental activity hand orthosis control using the EEG: a case study].
    Pfurtscheller G; Müller G; Korisek G
    Rehabilitation (Stuttg); 2002 Feb; 41(1):48-52. PubMed ID: 11830792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Online performance evaluation of motor imagery BCI with augmented-reality virtual hand feedback.
    Chin ZY; Ang KK; Wang C; Guan C
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3341-4. PubMed ID: 21097231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance assessment of a brain-computer interface driven hand orthosis.
    King CE; Dave KR; Wang PT; Mizuta M; Reinkensmeyer DJ; Do AH; Moromugi S; Nenadic Z
    Ann Biomed Eng; 2014 Oct; 42(10):2095-105. PubMed ID: 25012465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensorimotor rhythm-based brain-computer interface training: the impact on motor cortical responsiveness.
    Pichiorri F; De Vico Fallani F; Cincotti F; Babiloni F; Molinari M; Kleih SC; Neuper C; Kübler A; Mattia D
    J Neural Eng; 2011 Apr; 8(2):025020. PubMed ID: 21436514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcranial magnetic stimulation for individual identification of the best electrode position for a motor imagery-based brain-computer interface.
    Hänselmann S; Schneiders M; Weidner N; Rupp R
    J Neuroeng Rehabil; 2015 Aug; 12():71. PubMed ID: 26303933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Current trends in Graz Brain-Computer Interface (BCI) research.
    Pfurtscheller G; Neuper C; Guger C; Harkam W; Ramoser H; Schlögl A; Obermaier B; Pregenzer M
    IEEE Trans Rehabil Eng; 2000 Jun; 8(2):216-9. PubMed ID: 10896192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cortical imaging of event-related (de)synchronization during online control of brain-computer interface using minimum-norm estimates in frequency domain.
    Yuan H; Doud A; Gururajan A; He B
    IEEE Trans Neural Syst Rehabil Eng; 2008 Oct; 16(5):425-31. PubMed ID: 18990646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of optimal location of EEG reference electrode for motor imagery based BCI using fMRI.
    Choi SH; Lee M; Wang Y; Hong B
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1193-6. PubMed ID: 17946448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous EEG classification during motor imagery--simulation of an asynchronous BCI.
    Townsend G; Graimann B; Pfurtscheller G
    IEEE Trans Neural Syst Rehabil Eng; 2004 Jun; 12(2):258-65. PubMed ID: 15218939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain-computer interface controlled functional electrical stimulation system for ankle movement.
    Do AH; Wang PT; King CE; Abiri A; Nenadic Z
    J Neuroeng Rehabil; 2011 Aug; 8():49. PubMed ID: 21867567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of electrode channels in Brain Computer Interfaces.
    Kamrunnahar M; Dias NS; Schiff SJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6477-80. PubMed ID: 19964437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An SSVEP BCI to control a hand orthosis for persons with tetraplegia.
    Ortner R; Allison BZ; Korisek G; Gaggl H; Pfurtscheller G
    IEEE Trans Neural Syst Rehabil Eng; 2011 Feb; 19(1):1-5. PubMed ID: 20875978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of an electrical prosthesis with an SSVEP-based BCI.
    Müller-Putz GR; Pfurtscheller G
    IEEE Trans Biomed Eng; 2008 Jan; 55(1):361-4. PubMed ID: 18232384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward self-paced brain-computer communication: navigation through virtual worlds.
    Scherer R; Lee F; Schlogl A; Leeb R; Bischof H; Pfurtscheller G
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):675-82. PubMed ID: 18270004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain oscillatory signatures of motor tasks.
    Ramos-Murguialday A; Birbaumer N
    J Neurophysiol; 2015 Jun; 113(10):3663-82. PubMed ID: 25810484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance of motor imagery brain-computer interface based on anodal transcranial direct current stimulation modulation.
    Wei P; He W; Zhou Y; Wang L
    IEEE Trans Neural Syst Rehabil Eng; 2013 May; 21(3):404-15. PubMed ID: 23475381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous detection of motor imagery in a four-class asynchronous BCI.
    Sadeghian EB; Moradi MH
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3241-4. PubMed ID: 18002686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BCI Competition 2003--Data set III: probabilistic modeling of sensorimotor mu rhythms for classification of imaginary hand movements.
    Lemm S; Schäfer C; Curio G
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):1077-80. PubMed ID: 15188882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.