BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 22255655)

  • 41. Task-irrelevant alpha component analysis in motor imagery based brain computer interface.
    Lou B; Hong B; Gao S
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1021-4. PubMed ID: 19162832
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A public data hub for benchmarking common brain-computer interface algorithms.
    Zander TO; Ihme K; Gärtner M; Rötting M
    J Neural Eng; 2011 Apr; 8(2):025021. PubMed ID: 21436533
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke.
    Buch E; Weber C; Cohen LG; Braun C; Dimyan MA; Ard T; Mellinger J; Caria A; Soekadar S; Fourkas A; Birbaumer N
    Stroke; 2008 Mar; 39(3):910-7. PubMed ID: 18258825
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Muscle-selective disinhibition of corticomotor representations using a motor imagery-based brain-computer interface.
    Takemi M; Maeda T; Masakado Y; Siebner HR; Ushiba J
    Neuroimage; 2018 Dec; 183():597-605. PubMed ID: 30172003
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A brain-computer interface driven by imagining different force loads on a single hand: an online feasibility study.
    Wang K; Wang Z; Guo Y; He F; Qi H; Xu M; Ming D
    J Neuroeng Rehabil; 2017 Sep; 14(1):93. PubMed ID: 28893295
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A hybrid brain computer interface to control the direction and speed of a simulated or real wheelchair.
    Long J; Li Y; Wang H; Yu T; Pan J; Li F
    IEEE Trans Neural Syst Rehabil Eng; 2012 Sep; 20(5):720-9. PubMed ID: 22692936
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bispectrum-based feature extraction technique for devising a practical brain-computer interface.
    Shahid S; Prasad G
    J Neural Eng; 2011 Apr; 8(2):025014. PubMed ID: 21436530
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High-resolution EEG techniques for brain-computer interface applications.
    Cincotti F; Mattia D; Aloise F; Bufalari S; Astolfi L; De Vico Fallani F; Tocci A; Bianchi L; Marciani MG; Gao S; Millan J; Babiloni F
    J Neurosci Methods; 2008 Jan; 167(1):31-42. PubMed ID: 17706292
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Application of covariate shift adaptation techniques in brain-computer interfaces.
    Li Y; Kambara H; Koike Y; Sugiyama M
    IEEE Trans Biomed Eng; 2010 Jun; 57(6):1318-24. PubMed ID: 20172795
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Berlin Brain--Computer Interface: accurate performance from first-session in BCI-naïve subjects.
    Blankertz B; Losch F; Krauledat M; Dornhege G; Curio G; Müller KR
    IEEE Trans Biomed Eng; 2008 Oct; 55(10):2452-62. PubMed ID: 18838371
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Discrimination between left and right hand movement imagery event-releated EEG pattern].
    Zhu Q; Wang M
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Dec; 21(6):1031-4. PubMed ID: 15646359
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multi-channel linear descriptors for event-related EEG collected in brain computer interface.
    Pei XM; Zheng CX; Xu J; Bin GY; Wang HW
    J Neural Eng; 2006 Mar; 3(1):52-8. PubMed ID: 16510942
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An adaptive filter bank for motor imagery based Brain Computer Interface.
    Thomas KP; Guan C; Tong LC; Prasad VA
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1104-7. PubMed ID: 19162856
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Precise estimation of human corticospinal excitability associated with the levels of motor imagery-related EEG desynchronization extracted by a locked-in amplifier algorithm.
    Takahashi K; Kato K; Mizuguchi N; Ushiba J
    J Neuroeng Rehabil; 2018 Nov; 15(1):93. PubMed ID: 30384845
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Motor Imagery-Based Brain-Computer Interface Coupled to a Robotic Hand Orthosis Aimed for Neurorehabilitation of Stroke Patients.
    Cantillo-Negrete J; Carino-Escobar RI; Carrillo-Mora P; Elias-Vinas D; Gutierrez-Martinez J
    J Healthc Eng; 2018; 2018():1624637. PubMed ID: 29849992
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bipolar electrode selection for a motor imagery based brain-computer interface.
    Lou B; Hong B; Gao X; Gao S
    J Neural Eng; 2008 Sep; 5(3):342-9. PubMed ID: 18756030
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Clinical evaluation of BrainTree, a motor imagery hybrid BCI speller.
    Perdikis S; Leeb R; Williamson J; Ramsay A; Tavella M; Desideri L; Hoogerwerf EJ; Al-Khodairy A; Murray-Smith R; Millán JD
    J Neural Eng; 2014 Jun; 11(3):036003. PubMed ID: 24737114
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Recruitment of Additional Corticospinal Pathways in the Human Brain with State-Dependent Paired Associative Stimulation.
    Kraus D; Naros G; Guggenberger R; Leão MT; Ziemann U; Gharabaghi A
    J Neurosci; 2018 Feb; 38(6):1396-1407. PubMed ID: 29335359
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Application of tripolar concentric electrodes and prefeature selection algorithm for brain-computer interface.
    Besio WG; Cao H; Zhou P
    IEEE Trans Neural Syst Rehabil Eng; 2008 Apr; 16(2):191-4. PubMed ID: 18403288
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Neuroelectrical source imaging of mu rhythm control for BCI applications.
    Mattiocco M; Babiloni F; Mattia D; Bufalari S; Sergio S; Salinari S; Marciani MG; Cincotti F
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():980-3. PubMed ID: 17945612
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.