BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

44 related articles for article (PubMed ID: 22255659)

  • 1. Continuous decoding of intended movements with a hybrid kinetic and kinematic brain machine interface.
    Suminski AJ; Willett FR; Fagg AH; Bodenhamer M; Hatsopoulos NG
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5802-6. PubMed ID: 22255659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cortical Control of Virtual Self-Motion Using Task-Specific Subspaces.
    Schroeder KE; Perkins SM; Wang Q; Churchland MM
    J Neurosci; 2022 Jan; 42(2):220-239. PubMed ID: 34716229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous decoding of movement intention of upper limb self-initiated analytic movements from pre-movement EEG correlates.
    López-Larraz E; Montesano L; Gil-Agudo Á; Minguez J
    J Neuroeng Rehabil; 2014 Nov; 11():153. PubMed ID: 25398273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Review of Motor Brain-Computer Interfaces Using Intracranial Electroencephalography Based on Surface Electrodes and Depth Electrodes.
    Wu X; Metcalfe B; He S; Tan H; Zhang D
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2408-2431. PubMed ID: 38949928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unsupervised Neural Manifold Alignment for Stable Decoding of Movement from Cortical Signals.
    Ganjali M; Mehridehnavi A; Rakhshani S; Khorasani A
    Int J Neural Syst; 2024 Jan; 34(1):2450006. PubMed ID: 38063378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A training platform for many-dimensional prosthetic devices using a virtual reality environment.
    Putrino D; Wong YT; Weiss A; Pesaran B
    J Neurosci Methods; 2015 Apr; 244():68-77. PubMed ID: 24726625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Point-and-click cursor control with an intracortical neural interface system by humans with tetraplegia.
    Kim SP; Simeral JD; Hochberg LR; Donoghue JP; Friehs GM; Black MJ
    IEEE Trans Neural Syst Rehabil Eng; 2011 Apr; 19(2):193-203. PubMed ID: 21278024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rhesus monkeys learn to control a directional-key inspired brain machine interface via bio-feedback.
    Zhang C; Wang H; Tang S; Li Z
    PLoS One; 2024; 19(1):e0286742. PubMed ID: 38232123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A cryptography-based approach for movement decoding.
    Dyer EL; Gheshlaghi Azar M; Perich MG; Fernandes HL; Naufel S; Miller LE; Körding KP
    Nat Biomed Eng; 2017 Dec; 1(12):967-976. PubMed ID: 31015712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shaping the dynamics of a bidirectional neural interface.
    Vato A; Semprini M; Maggiolini E; Szymanski FD; Fadiga L; Panzeri S; Mussa-Ivaldi FA
    PLoS Comput Biol; 2012; 8(7):e1002578. PubMed ID: 22829754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural decoding based on probabilistic neural network.
    Yu Y; Zhang SM; Zhang HJ; Liu XC; Zhang QS; Zheng XX; Dai JH
    J Zhejiang Univ Sci B; 2010 Apr; 11(4):298-306. PubMed ID: 20349527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human primary motor cortex indexes the onset of subjective intention in brain-machine-interface mediated actions.
    Noel JP; Bockbrader M; Colachis S; Solca M; Orepic P; Ganzer PD; Haggard P; Rezai A; Blanke O; Serino A
    bioRxiv; 2023 Jul; ():. PubMed ID: 37547006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Where scrollbars are clicked, and why.
    Herbort O; Raßbach P; Kunde W
    Cogn Res Princ Implic; 2024 Apr; 9(1):23. PubMed ID: 38637348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decoding hand kinetics and kinematics using somatosensory cortex activity in active and passive movement.
    Mirfathollahi A; Ghodrati MT; Shalchyan V; Zarrindast MR; Daliri MR
    iScience; 2023 Oct; 26(10):107808. PubMed ID: 37736040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A muscle-activity-dependent gain between motor cortex and EMG.
    Naufel S; Glaser JI; Kording KP; Perreault EJ; Miller LE
    J Neurophysiol; 2019 Jan; 121(1):61-73. PubMed ID: 30379603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Paradigm Shift in Sensorimotor Control Research and Brain Machine Interface Control: The Influence of Context on Sensorimotor Representations.
    Zhao Y; Hessburg JP; Asok Kumar JN; Francis JT
    Front Neurosci; 2018; 12():579. PubMed ID: 30250422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Comparison of Intention Estimation Methods for Decoder Calibration in Intracortical Brain-Computer Interfaces.
    Willett FR; Murphy BA; Young DR; Memberg WD; Blabe CH; Pandarinath C; Franco B; Saab J; Walter BL; Sweet JA; Miller JP; Henderson JM; Shenoy KV; Simeral JD; Jarosiewicz B; Hochberg LR; Kirsch RF; Ajiboye AB
    IEEE Trans Biomed Eng; 2018 Sep; 65(9):2066-2078. PubMed ID: 29989927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparing temporal aspects of visual, tactile, and microstimulation feedback for motor control.
    Godlove JM; Whaite EO; Batista AP
    J Neural Eng; 2014 Aug; 11(4):046025. PubMed ID: 25028989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Restoring sensorimotor function through intracortical interfaces: progress and looming challenges.
    Bensmaia SJ; Miller LE
    Nat Rev Neurosci; 2014 May; 15(5):313-25. PubMed ID: 24739786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Movement representation in the primary motor cortex and its contribution to generalizable EMG predictions.
    Oby ER; Ethier C; Miller LE
    J Neurophysiol; 2013 Feb; 109(3):666-78. PubMed ID: 23155172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.