These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 22255664)

  • 1. Carbon nanotubes (CNTs) based strain sensors for a wearable monitoring and biofeedback system for pressure ulcer prevention and rehabilitation.
    Boissy P; Genest J; Patenaude J; Poirier MS; Chenel V; Béland JP; Legault GA; Bernier L; Tapin D; Beauvais J
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5824-7. PubMed ID: 22255664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring.
    Park JJ; Hyun WJ; Mun SC; Park YT; Park OO
    ACS Appl Mater Interfaces; 2015 Mar; 7(11):6317-24. PubMed ID: 25735398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Piezoresistive characteristics of MWNT nanocomposites and fabrication as a polymer pressure sensor.
    Gau C; Ko HS; Chen HT
    Nanotechnology; 2009 May; 20(18):185503. PubMed ID: 19420615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An embedded PDMS nanocomposite strain sensor toward biomedical applications.
    Liu CX; Choi JW
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6391-4. PubMed ID: 19964694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly Stretchable, Directionally Oriented Carbon Nanotube/PDMS Conductive Films with Enhanced Sensitivity as Wearable Strain Sensors.
    Tas MO; Baker MA; Masteghin MG; Bentz J; Boxshall K; Stolojan V
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):39560-39573. PubMed ID: 31552734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The new age of carbon nanotubes: an updated review of functionalized carbon nanotubes in electrochemical sensors.
    Gao C; Guo Z; Liu JH; Huang XJ
    Nanoscale; 2012 Mar; 4(6):1948-63. PubMed ID: 22337209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon nanotube-based sensors.
    Sinha N; Ma J; Yeow JT
    J Nanosci Nanotechnol; 2006 Mar; 6(3):573-90. PubMed ID: 16573108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electromechanical piezoresistive sensing in suspended graphene membranes.
    Smith AD; Niklaus F; Paussa A; Vaziri S; Fischer AC; Sterner M; Forsberg F; Delin A; Esseni D; Palestri P; Östling M; Lemme MC
    Nano Lett; 2013 Jul; 13(7):3237-42. PubMed ID: 23786215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabric-based integrated energy devices for wearable activity monitors.
    Jung S; Lee J; Hyeon T; Lee M; Kim DH
    Adv Mater; 2014 Sep; 26(36):6329-34. PubMed ID: 25070873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon nanotubes for biomedical applications.
    Sinha N; Yeow JT
    IEEE Trans Nanobioscience; 2005 Jun; 4(2):180-95. PubMed ID: 16117026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly sensitive carbon nanotube-embedding gas sensors operating at atmospheric pressure.
    Yun JH; Kim J; Park YC; Song JW; Shin DH; Han CS
    Nanotechnology; 2009 Feb; 20(5):055503. PubMed ID: 19417347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The bulk piezoresistive characteristics of carbon nanotube composites for strain sensing of structures.
    Kang I; Joung KY; Choi GR; Schulz MJ; Choi YS; Hwang SH; Ko HS
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3736-9. PubMed ID: 18047048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of a stretchable solid-state micro-supercapacitor array.
    Kim D; Shin G; Kang YJ; Kim W; Ha JS
    ACS Nano; 2013 Sep; 7(9):7975-82. PubMed ID: 23952841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-Repairing, Large Linear Working Range Shape Memory Carbon Nanotubes/Ethylene Vinyl Acetate Fiber Strain Sensor for Human Movement Monitoring.
    Li Z; Qi X; Xu L; Lu H; Wang W; Jin X; Md ZI; Zhu Y; Fu Y; Ni Q; Dong Y
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):42179-42192. PubMed ID: 32822534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superfast-response and ultrahigh-power-density electromechanical actuators based on hierarchal carbon nanotube electrodes and chitosan.
    Li J; Ma W; Song L; Niu Z; Cai L; Zeng Q; Zhang X; Dong H; Zhao D; Zhou W; Xie S
    Nano Lett; 2011 Nov; 11(11):4636-41. PubMed ID: 21972899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design, fabrication and metrological evaluation of wearable pressure sensors.
    Goy CB; Menichetti V; Yanicelli LM; Lucero JB; López MA; Parodi NF; Herrera MC
    J Med Eng Technol; 2015 Apr; 39(3):208-15. PubMed ID: 25815889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon Nanotubes/Hydrophobically Associated Hydrogels as Ultrastretchable, Highly Sensitive, Stable Strain, and Pressure Sensors.
    Qin Z; Sun X; Yu Q; Zhang H; Wu X; Yao M; Liu W; Yao F; Li J
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4944-4953. PubMed ID: 31912722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gum Sensor: A Stretchable, Wearable, and Foldable Sensor Based on Carbon Nanotube/Chewing Gum Membrane.
    Darabi MA; Khosrozadeh A; Wang Q; Xing M
    ACS Appl Mater Interfaces; 2015 Dec; 7(47):26195-205. PubMed ID: 26524110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon nanotube nanoelectromechanical systems as magnetometers for single-molecule magnets.
    Ganzhorn M; Klyatskaya S; Ruben M; Wernsdorfer W
    ACS Nano; 2013 Jul; 7(7):6225-36. PubMed ID: 23802618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Miniature low-power inertial sensors: promising technology for implantable motion capture systems.
    Lambrecht JM; Kirsch RF
    IEEE Trans Neural Syst Rehabil Eng; 2014 Nov; 22(6):1138-47. PubMed ID: 24846651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.