These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 22255666)

  • 21. Body-Fixed Sensors for Parkinson Disease.
    Mirelman A; Giladi N; Hausdorff JM
    JAMA; 2015 Sep; 314(9):873-4. PubMed ID: 26325552
    [No Abstract]   [Full Text] [Related]  

  • 22. Improving activity recognition using a wearable barometric pressure sensor in mobility-impaired stroke patients.
    Massé F; Gonzenbach RR; Arami A; Paraschiv-Ionescu A; Luft AR; Aminian K
    J Neuroeng Rehabil; 2015 Aug; 12():72. PubMed ID: 26303929
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Toward real time detection of the basic living activity in home using a wearable sensor and smart home sensors.
    Bang S; Kim M; Song SK; Park SJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5200-3. PubMed ID: 19163889
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Instrumented Shoes for Real-Time Activity Monitoring Applications.
    Moufawad El Achkar C; Lenoble-Hoskovec C; Major K; Paraschiv-Ionescu A; Büla C; Aminian K
    Stud Health Technol Inform; 2016; 225():663-7. PubMed ID: 27332298
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Wearable systems with minimal set-up for monitoring and training of balance and mobility.
    Chiari L
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5828-32. PubMed ID: 22255665
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A low-power multi-modal body sensor network with application to epileptic seizure monitoring.
    Altini M; Del Din S; Patel S; Schachter S; Penders J; Bonato P
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1806-9. PubMed ID: 22254679
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Learning Predictive Movement Models From Fabric-Mounted Wearable Sensors.
    Michael B; Howard M
    IEEE Trans Neural Syst Rehabil Eng; 2016 Dec; 24(12):1395-1404. PubMed ID: 26685255
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Estimating intensity of physical activity: a comparison of wearable accelerometer and gyro sensors and 3 sensor locations.
    Pärkkä J; Ermes M; Antila K; van Gils M; Mänttäri A; Nieminen H
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1511-4. PubMed ID: 18002254
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gait assessment in Parkinson's disease patients through a network of wearable accelerometers in unsupervised environments.
    Cancela J; Pastorino M; Arredondo MT; Pansera M; Pastor-Sanz L; Villagra F; Pastor MA; Gonzalez AP
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2233-6. PubMed ID: 22254784
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Objective diagnosis of ADHD using IMUs.
    O'Mahony N; Florentino-Liano B; Carballo JJ; Baca-García E; Rodríguez AA
    Med Eng Phys; 2014 Jul; 36(7):922-6. PubMed ID: 24657100
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Motion capture system using Wiimote motion sensors.
    Harbert SD; Zuerndorfer J; Jaiswal T; Harley LR
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4493-6. PubMed ID: 23366926
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Activity classification using a single chest mounted tri-axial accelerometer.
    Godfrey A; Bourke AK; Olaighin GM; van de Ven P; Nelson J
    Med Eng Phys; 2011 Nov; 33(9):1127-35. PubMed ID: 21636308
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantitative assessment of upper limb motion in neurorehabilitation utilizing inertial sensors.
    Bai L; Pepper MG; Yan Y; Spurgeon SK; Sakel M; Phillips M
    IEEE Trans Neural Syst Rehabil Eng; 2015 Mar; 23(2):232-43. PubMed ID: 25420266
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On the correlation between motion data captured from low-cost gaming controllers and high precision encoders.
    Purkayastha SN; Byrne MD; O'Malley MK
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4529-32. PubMed ID: 23366935
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biometric and mobile gait analysis for early diagnosis and therapy monitoring in Parkinson's disease.
    Barth J; Klucken J; Kugler P; Kammerer T; Steidl R; Winkler J; Hornegger J; Eskofier B
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():868-71. PubMed ID: 22254448
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An integrated motion capture system for evaluation of neuromuscular disease patients.
    Gamarnik V; Pan S; Malke J; Chiu C; Koo B; Montes J; Yeager K; Marra J; Dunaway S; Montgomery M; Strauss N; De Vivo DC; Kaufmann P; Morrison B; Konofagou E
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():218-21. PubMed ID: 19964732
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Estimating Fugl-Meyer clinical scores in stroke survivors using wearable sensors.
    Del Din S; Patel S; Cobelli C; Bonato P
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5839-42. PubMed ID: 22255667
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Estimating energy expenditure using body-worn accelerometers: a comparison of methods, sensors number and positioning.
    Altini M; Penders J; Vullers R; Amft O
    IEEE J Biomed Health Inform; 2015 Jan; 19(1):219-26. PubMed ID: 24691168
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A preliminary study of using wireless kinematic sensors to identify basic Activities of Daily Living.
    Dalton AF; Morgan F; Olaighin G
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2079-82. PubMed ID: 19163105
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Continuous monitoring of turning in Parkinson's disease: Rehabilitation potential.
    Mancini M; El-Gohary M; Pearson S; McNames J; Schlueter H; Nutt JG; King LA; Horak FB
    NeuroRehabilitation; 2015; 37(1):3-10. PubMed ID: 26409689
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.