BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 22255675)

  • 1. Amplitude of Dominant T-Wave Alternans assessment on ECGs obtained from a biophysical model.
    Sassi R; Mainardi LT; Cerutti S
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5872-5. PubMed ID: 22255675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of T-wave alternans using the dominant T-wave paradigm.
    Mainardi L; Sassi R
    J Electrocardiol; 2011; 44(2):119-25. PubMed ID: 21353060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of noise on T-wave alternans measurement in ambulatory ECGs using modified moving average versus spectral method.
    Selvaraj RJ; Chauhan VS
    Pacing Clin Electrophysiol; 2009 May; 32(5):632-41. PubMed ID: 19422585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. T-wave alternans detection using a Bayesian approach and a Gibbs sampler.
    Lin C; Mailhes C; Tourneret JY
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5868-71. PubMed ID: 22255674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Importance of over-reading ambulatory ECG-based microvolt T-wave alternans to eliminate three main sources of measurement error.
    Takasugi N; Matsuno H; Takasugi M; Shinoda K; Watanabe T; Ito H; Okura H; Verrier RL
    Ann Noninvasive Electrocardiol; 2019 Sep; 24(5):e12670. PubMed ID: 31241245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship between extracellular T-wave height, T-wave alternans amplitude, and tissue action potential alternans: a 1-dimensional computer modeling study.
    Doshi AN; Idriss SF
    J Electrocardiol; 2009; 42(6):549-54. PubMed ID: 19616219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance evaluation of diverse T-wave alternans estimators under variety of noise characterizations and alternans distributions.
    Bakhshi AD; Bashir S; Shafi I; Maud MA
    Australas Phys Eng Sci Med; 2012 Dec; 35(4):439-54. PubMed ID: 23225303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. T wave alternans evaluation using adaptive time-frequency signal analysis and non-negative matrix factorization.
    Ghoraani B; Krishnan S; Selvaraj RJ; Chauhan VS
    Med Eng Phys; 2011 Jul; 33(6):700-11. PubMed ID: 21333581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of resistive barrier location on the relationship between T-wave alternans and cellular repolarization alternans: a 1-D modeling study.
    Doshi AN; Idriss SF
    J Electrocardiol; 2010; 43(6):566-71. PubMed ID: 21040826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive time-frequency matrix features for T wave alternans analysis.
    Ghoraani B; Krishnan S; Selvaraj RJ; Chauhan VS
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():39-42. PubMed ID: 19965108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. T-wave alternans: lessons learned from a biophysical ECG model.
    Sassi R; Mainardi LT
    J Electrocardiol; 2012; 45(6):566-70. PubMed ID: 22958909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methodological principles of T wave alternans analysis: a unified framework.
    Martínez JP; Olmos S
    IEEE Trans Biomed Eng; 2005 Apr; 52(4):599-613. PubMed ID: 15825862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of transient, regional cardiac repolarization alternans by time-frequency analysis of synthetic electrograms.
    Orini M; Hanson B; Taggart P; Lambiase P
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3773-6. PubMed ID: 24110552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting the optimal position and direction of a ubiquitous ECG using a multi-scale model of cardiac electrophysiology.
    Lim KM; Hong SB; Jeon JW; Gyung MS; Ko BH; Bae SK; Shin KS; Shim EB
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():993-6. PubMed ID: 22254479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of T-wave Alternans in ambulatory recordings using the ADTWA index.
    Corino VD; Monacizzo S; Sassi R; Mainardi LT; Martinez JP
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():402-5. PubMed ID: 26736284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting arrhythmia-free survival using spectral and modified-moving average analyses of T-wave alternans.
    Cox V; Patel M; Kim J; Liu T; Sivaraman G; Narayan SM
    Pacing Clin Electrophysiol; 2007 Mar; 30(3):352-8. PubMed ID: 17367354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative analysis of methods for automatic detection and quantification of microvolt T-wave alternans.
    Burattini L; Bini S; Burattini R
    Med Eng Phys; 2009 Dec; 31(10):1290-8. PubMed ID: 19758833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel method for determining the phase of T-wave alternans: diagnostic and therapeutic implications.
    Sayadi O; Merchant FM; Puppala D; Mela T; Singh JP; Heist EK; Owen C; Armoundas AA
    Circ Arrhythm Electrophysiol; 2013 Aug; 6(4):818-26. PubMed ID: 23884196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of repolarization alternans during ischemia: time-course and spatial analysis.
    Martínez JP; Olmos S; Wagner G; Laguna P
    IEEE Trans Biomed Eng; 2006 Apr; 53(4):701-11. PubMed ID: 16602577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellular and ionic basis for T-wave alternans under long-QT conditions.
    Shimizu W; Antzelevitch C
    Circulation; 1999 Mar; 99(11):1499-507. PubMed ID: 10086976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.