These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 22255693)

  • 21. An improved gradient vector flow algorithm for optic disc segmentation.
    Zhou H; Schaefer G; Liu T; Lin F
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4793-6. PubMed ID: 21097291
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Patch-based automatic retinal vessel segmentation in global and local structural context.
    Cao S; Bharath AA; Parker KH; Ng J
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4942-5. PubMed ID: 23367036
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deformable registration of retinal fluorescein angiogram sequences using vasculature structures.
    Perez-Rovira A; Trucco E; Wilson P; Liu J
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4383-6. PubMed ID: 21096457
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vessel boundary delineation on fundus images using graph-based approach.
    Xu X; Niemeijer M; Song Q; Sonka M; Garvin MK; Reinhardt JM; Abràmoff MD
    IEEE Trans Med Imaging; 2011 Jun; 30(6):1184-91. PubMed ID: 21216707
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Automatic detection of red lesions in retinal images using a multilayer perceptron neural network.
    García M; Sánchez CI; López MI; Díez A; Hornero R
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5425-8. PubMed ID: 19163944
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Detection of hard exudates in retinal images using a radial basis function classifier.
    García M; Sánchez CI; Poza J; López MI; Hornero R
    Ann Biomed Eng; 2009 Jul; 37(7):1448-63. PubMed ID: 19430906
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vessel extraction from non-fluorescein fundus images using orientation-aware detector.
    Yin B; Li H; Sheng B; Hou X; Chen Y; Wu W; Li P; Shen R; Bao Y; Jia W
    Med Image Anal; 2015 Dec; 26(1):232-42. PubMed ID: 26474120
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computer-based detection of diabetes retinopathy stages using digital fundus images.
    Acharya UR; Lim CM; Ng EY; Chee C; Tamura T
    Proc Inst Mech Eng H; 2009 Jul; 223(5):545-53. PubMed ID: 19623908
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simple methods for segmentation and measurement of diabetic retinopathy lesions in retinal fundus images.
    Köse C; Sevik U; Ikibaş C; Erdöl H
    Comput Methods Programs Biomed; 2012 Aug; 107(2):274-93. PubMed ID: 21757250
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exudate-based diabetic macular edema detection in fundus images using publicly available datasets.
    Giancardo L; Meriaudeau F; Karnowski TP; Li Y; Garg S; Tobin KW; Chaum E
    Med Image Anal; 2012 Jan; 16(1):216-26. PubMed ID: 21865074
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Generalizing the majority voting scheme to spatially constrained voting.
    Hajdu A; Hajdu L; Jónás Á; Kovács L; Tomán H
    IEEE Trans Image Process; 2013 Nov; 22(11):4182-94. PubMed ID: 23807442
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An automatic graph-based approach for artery/vein classification in retinal images.
    Dashtbozorg B; Mendonça AM; Campilho A
    IEEE Trans Image Process; 2014 Mar; 23(3):1073-83. PubMed ID: 23693131
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Automated characterization of blood vessels as arteries and veins in retinal images.
    Mirsharif Q; Tajeripour F; Pourreza H
    Comput Med Imaging Graph; 2013; 37(7-8):607-17. PubMed ID: 23849699
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Automated lesion detectors in retinal fundus images.
    Figueiredo IN; Kumar S; Oliveira CM; Ramos JD; Engquist B
    Comput Biol Med; 2015 Nov; 66():47-65. PubMed ID: 26378502
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Texton-based segmentation of retinal vessels.
    Adjeroh DA; Kandaswamy U; Odom JV
    J Opt Soc Am A Opt Image Sci Vis; 2007 May; 24(5):1384-93. PubMed ID: 17429484
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Automated detection of diabetic retinopathy: barriers to translation into clinical practice.
    Abramoff MD; Niemeijer M; Russell SR
    Expert Rev Med Devices; 2010 Mar; 7(2):287-96. PubMed ID: 20214432
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optic disc detection from normalized digital fundus images by means of a vessels' direction matched filter.
    Youssif AR; Ghalwash AZ; Ghoneim AR
    IEEE Trans Med Imaging; 2008 Jan; 27(1):11-8. PubMed ID: 18270057
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improvement of automated detection method of hemorrhages in fundus images.
    Hatanaka Y; Nakagawa T; Hayashi Y; Hara T; Fujita H
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5429-32. PubMed ID: 19163945
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Accurate estimation of retinal vessel width using bagged decision trees and an extended multiresolution Hermite model.
    Lupaşcu CA; Tegolo D; Trucco E
    Med Image Anal; 2013 Dec; 17(8):1164-80. PubMed ID: 24001930
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Localizing Microaneurysms in Fundus Images Through Singular Spectrum Analysis.
    Wang S; Tang HL; Al Turk LI; Hu Y; Sanei S; Saleh GM; Peto T
    IEEE Trans Biomed Eng; 2017 May; 64(5):990-1002. PubMed ID: 27362756
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.