BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 22255748)

  • 61. Implementation and experimental evaluation of Mega-voltage fan-beam CT using a linear accelerator.
    Gong H; Tao S; Gagneur JD; Liu W; Shen J; McCollough CH; Hu Y; Leng S
    Radiat Oncol; 2021 Jul; 16(1):139. PubMed ID: 34321029
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Experimental verification of a real-time compensation functionality for dose changes due to target motion in scanned particle therapy.
    Luchtenborg R; Saito N; Durante M; Bert C
    Med Phys; 2011 Oct; 38(10):5448-58. PubMed ID: 21992364
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A method to estimate mean position, motion magnitude, motion correlation, and trajectory of a tumor from cone-beam CT projections for image-guided radiotherapy.
    Poulsen PR; Cho B; Keall PJ
    Int J Radiat Oncol Biol Phys; 2008 Dec; 72(5):1587-96. PubMed ID: 19028282
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Prostate tumor alignment and continuous, real-time adaptive radiation therapy using electromagnetic fiducials: clinical and cost-utility analyses.
    Quigley MM; Mate TP; Sylvester JE
    Urol Oncol; 2009; 27(5):473-82. PubMed ID: 18625565
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Planning study comparison of real-time target tracking and four-dimensional inverse planning for managing patient respiratory motion.
    Zhang P; Hugo GD; Yan D
    Int J Radiat Oncol Biol Phys; 2008 Nov; 72(4):1221-7. PubMed ID: 18954716
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Real-time tumor tracking: automatic compensation of target motion using the Siemens 160 MLC.
    Tacke MB; Nill S; Krauss A; Oelfke U
    Med Phys; 2010 Feb; 37(2):753-61. PubMed ID: 20229885
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Current State of Image Guidance in Radiation Oncology: Implications for PTV Margin Expansion and Adaptive Therapy.
    Zou W; Dong L; Kevin Teo BK
    Semin Radiat Oncol; 2018 Jun; 28(3):238-247. PubMed ID: 29933883
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Advanced technologies in the radiotherapy clinic: system fundamentals.
    Meyer JL; Sharpe M; Brock K; Deasy J; Craig T; Moseley D; Alaly J; Zakaryan K
    Front Radiat Ther Oncol; 2011; 43():29-59. PubMed ID: 21625147
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A method to improve the effectiveness of diode in vivo dosimetry.
    Alecu R; Alecu M; Ochran TG
    Med Phys; 1998 May; 25(5):746-9. PubMed ID: 9608486
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Intensity-modulated radiotherapy: current status and issues of interest.
    Intensity Modulated Radiation Therapy Collaborative Working Group
    Int J Radiat Oncol Biol Phys; 2001 Nov; 51(4):880-914. PubMed ID: 11704310
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Technologies of image guidance and the development of advanced linear accelerator systems for radiotherapy.
    Wu VWC; Law MYY; Star-Lack J; Cheung FWK; Ling CC
    Front Radiat Ther Oncol; 2011; 43():132-164. PubMed ID: 21625152
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Cancer radiotherapy based on femtosecond IR laser-beam filamentation yielding ultra-high dose rates and zero entrance dose.
    Meesat R; Belmouaddine H; Allard JF; Tanguay-Renaud C; Lemay R; Brastaviceanu T; Tremblay L; Paquette B; Wagner JR; Jay-Gerin JP; Lepage M; Huels MA; Houde D
    Proc Natl Acad Sci U S A; 2012 Sep; 109(38):E2508-13. PubMed ID: 22927378
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Motion management and image guidance for thoracic tumor radiotherapy: clinical treatment programs.
    Loo BW; Kavanagh BD; Meyer JL
    Front Radiat Ther Oncol; 2011; 43():271-291. PubMed ID: 21625158
    [TBL] [Abstract][Full Text] [Related]  

  • 74. An algorithm to extract three-dimensional motion by marker tracking in the kV projections from an on-board imager: four-dimensional cone-beam CT and tumor tracking implications.
    Ali I; Alsbou N; Herman T; Ahmad S
    J Appl Clin Med Phys; 2011 Feb; 12(2):3407. PubMed ID: 21587189
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Development of computer systems for radiotherapy of cancer.
    Umegaki Y
    Jpn J Clin Oncol; 2010 Sep; 40(9):e65-82. PubMed ID: 20736216
    [No Abstract]   [Full Text] [Related]  

  • 76. A quality assurance program for image quality of cone-beam CT guidance in radiation therapy.
    Bissonnette JP; Moseley DJ; Jaffray DA
    Med Phys; 2008 May; 35(5):1807-15. PubMed ID: 18561655
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A dual-Kinect approach to determine torso surface motion for respiratory motion correction in PET.
    Heß M; Büther F; Gigengack F; Dawood M; Schäfers KP
    Med Phys; 2015 May; 42(5):2276-86. PubMed ID: 25979022
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Proton therapy in the clinic.
    DeLaney TF
    Front Radiat Ther Oncol; 2011; 43():465-485. PubMed ID: 21625169
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Locating and targeting moving tumors with radiation beams.
    Dieterich S; Cleary K; D'Souza W; Murphy M; Wong KH; Keall P
    Med Phys; 2008 Dec; 35(12):5684-94. PubMed ID: 19175125
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Advances in image-guided radiation therapy.
    Dawson LA; Jaffray DA
    J Clin Oncol; 2007 Mar; 25(8):938-46. PubMed ID: 17350942
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.