These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 22255762)

  • 1. MRMR optimized classification for automatic glaucoma diagnosis.
    Zhang Z; Kwoh CK; Liu J; Yin F; Wirawan A; Cheung C; Baskaran M; Aung T; Wong TY
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6228-31. PubMed ID: 22255762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic optic disc segmentation with peripapillary atrophy elimination.
    Cheng J; Liu J; Wong DW; Yin F; Cheung C; Baskaran M; Aung T; Wong TY
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6224-7. PubMed ID: 22255761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy.
    Peng H; Long F; Ding C
    IEEE Trans Pattern Anal Mach Intell; 2005 Aug; 27(8):1226-38. PubMed ID: 16119262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regional Image Features Model for Automatic Classification between Normal and Glaucoma in Fundus and Scanning Laser Ophthalmoscopy (SLO) Images.
    Haleem MS; Han L; Hemert Jv; Fleming A; Pasquale LR; Silva PS; Song BJ; Aiello LP
    J Med Syst; 2016 Jun; 40(6):132. PubMed ID: 27086033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Level-set based automatic cup-to-disc ratio determination using retinal fundus images in ARGALI.
    Wong DK; Liu J; Lim JH; Jia X; Yin F; Li H; Wong TY
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2266-9. PubMed ID: 19163151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated diagnosis of glaucoma using texture and higher order spectra features.
    Acharya UR; Dua S; Du X; Sree S V; Chua CK
    IEEE Trans Inf Technol Biomed; 2011 May; 15(3):449-55. PubMed ID: 21349793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic glaucoma diagnosis through medical imaging informatics.
    Liu J; Zhang Z; Wong DW; Xu Y; Yin F; Cheng J; Tan NM; Kwoh CK; Xu D; Tham YC; Aung T; Wong TY
    J Am Med Inform Assoc; 2013; 20(6):1021-7. PubMed ID: 23538725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glaucoma diagnostics.
    Geimer SA
    Acta Ophthalmol; 2013 Feb; 91 Thesis 1():1-32. PubMed ID: 23384049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superpixel classification based optic disc and optic cup segmentation for glaucoma screening.
    Cheng J; Liu J; Xu Y; Yin F; Wong DW; Tan NM; Tao D; Cheng CY; Aung T; Wong TY
    IEEE Trans Med Imaging; 2013 Jun; 32(6):1019-32. PubMed ID: 23434609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning assisted detection of glaucomatous optic neuropathy and potential designs for a generalizable model.
    Ko YC; Wey SY; Chen WT; Chang YF; Chen MJ; Chiou SH; Liu CJ; Lee CY
    PLoS One; 2020; 15(5):e0233079. PubMed ID: 32407355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimized approach to decision fusion of heterogeneous data for breast cancer diagnosis.
    Jesneck JL; Nolte LW; Baker JA; Floyd CE; Lo JY
    Med Phys; 2006 Aug; 33(8):2945-54. PubMed ID: 16964873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The region of interest localization for glaucoma analysis from retinal fundus image using deep learning.
    Mitra A; Banerjee PS; Roy S; Roy S; Setua SK
    Comput Methods Programs Biomed; 2018 Oct; 165():25-35. PubMed ID: 30337079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ORIGA(-light): an online retinal fundus image database for glaucoma analysis and research.
    Zhang Z; Yin FS; Liu J; Wong WK; Tan NM; Lee BH; Cheng J; Wong TY
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3065-8. PubMed ID: 21095735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic extraction of retinal features from colour retinal images for glaucoma diagnosis: a review.
    Haleem MS; Han L; van Hemert J; Li B
    Comput Med Imaging Graph; 2013; 37(7-8):581-96. PubMed ID: 24139134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning from healthy and stable eyes: A new approach for detection of glaucomatous progression.
    Belghith A; Bowd C; Medeiros FA; Balasubramanian M; Weinreb RN; Zangwill LM
    Artif Intell Med; 2015 Jun; 64(2):105-15. PubMed ID: 25940856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer-aided diagnosis of glaucoma using fundus images: A review.
    Hagiwara Y; Koh JEW; Tan JH; Bhandary SV; Laude A; Ciaccio EJ; Tong L; Acharya UR
    Comput Methods Programs Biomed; 2018 Oct; 165():1-12. PubMed ID: 30337064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of an artificial intelligence system to classify pathology and clinical features on retinal fundus images.
    Stevenson CH; Hong SC; Ogbuehi KC
    Clin Exp Ophthalmol; 2019 May; 47(4):484-489. PubMed ID: 30370587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classification of Glaucoma Stages Using Image Empirical Mode Decomposition from Fundus Images.
    Parashar D; Agrawal DK
    J Digit Imaging; 2022 Oct; 35(5):1283-1292. PubMed ID: 35581407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Image processing based automatic diagnosis of glaucoma using wavelet features of segmented optic disc from fundus image.
    Singh A; Dutta MK; ParthaSarathi M; Uher V; Burget R
    Comput Methods Programs Biomed; 2016 Feb; 124():108-20. PubMed ID: 26574297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incorporating privileged genetic information for fundus image based glaucoma detection.
    Duan L; Xu Y; Li W; Chen L; Wing DW; Wong TY; Liu J
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 2):204-11. PubMed ID: 25485380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.