These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 22255791)

  • 21. Classification of binary intentions for individuals with impaired oculomotor function: 'eyes-closed' SSVEP-based brain-computer interface (BCI).
    Lim JH; Hwang HJ; Han CH; Jung KY; Im CH
    J Neural Eng; 2013 Apr; 10(2):026021. PubMed ID: 23528484
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On the quantification of SSVEP frequency responses in human EEG in realistic BCI conditions.
    Kuś R; Duszyk A; Milanowski P; Łabęcki M; Bierzyńska M; Radzikowska Z; Michalska M; Zygierewicz J; Suffczyński P; Durka PJ
    PLoS One; 2013; 8(10):e77536. PubMed ID: 24204862
    [TBL] [Abstract][Full Text] [Related]  

  • 23. EEG-Controlled Wall-Crawling Cleaning Robot Using SSVEP-Based Brain-Computer Interface.
    Shao L; Zhang L; Belkacem AN; Zhang Y; Chen X; Li J; Liu H
    J Healthc Eng; 2020; 2020():6968713. PubMed ID: 32399166
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluate the Feasibility of Using Frontal SSVEP to Implement an SSVEP-Based BCI in Young, Elderly and ALS Groups.
    Hsu HT; Lee IH; Tsai HT; Chang HC; Shyu KK; Hsu CC; Chang HH; Yeh TK; Chang CY; Lee PL
    IEEE Trans Neural Syst Rehabil Eng; 2016 May; 24(5):603-15. PubMed ID: 26625417
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dry and noncontact EEG sensors for mobile brain-computer interfaces.
    Chi YM; Wang YT; Wang Y; Maier C; Jung TP; Cauwenberghs G
    IEEE Trans Neural Syst Rehabil Eng; 2012 Mar; 20(2):228-35. PubMed ID: 22180514
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessing the feasibility of online SSVEP decoding in human walking using a consumer EEG headset.
    Lin YP; Wang Y; Jung TP
    J Neuroeng Rehabil; 2014 Aug; 11():119. PubMed ID: 25108604
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A high-speed brain speller using steady-state visual evoked potentials.
    Nakanishi M; Wang Y; Wang YT; Mitsukura Y; Jung TP
    Int J Neural Syst; 2014 Sep; 24(6):1450019. PubMed ID: 25081427
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A self-paced and calibration-less SSVEP-based brain-computer interface speller.
    Cecotti H
    IEEE Trans Neural Syst Rehabil Eng; 2010 Apr; 18(2):127-33. PubMed ID: 20071274
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Maximizing Information Transfer in SSVEP-Based Brain-Computer Interfaces.
    Sengelmann M; Engel AK; Maye A
    IEEE Trans Biomed Eng; 2017 Feb; 64(2):381-394. PubMed ID: 28113192
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Dynamically Optimized SSVEP Brain-Computer Interface (BCI) Speller.
    Yin E; Zhou Z; Jiang J; Yu Y; Hu D
    IEEE Trans Biomed Eng; 2015 Jun; 62(6):1447-56. PubMed ID: 24801483
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mental tasks classification for BCI using image correlation.
    Úbeda A; Iáñez E; Azorin JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6303-6. PubMed ID: 22255779
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Frequency recognition in an SSVEP-based brain computer interface using empirical mode decomposition and refined generalized zero-crossing.
    Wu CH; Chang HC; Lee PL; Li KS; Sie JJ; Sun CW; Yang CY; Li PH; Deng HT; Shyu KK
    J Neurosci Methods; 2011 Mar; 196(1):170-81. PubMed ID: 21194547
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Developing an online steady-state visual evoked potential-based brain-computer interface system using EarEEG.
    Wang YT; Nakanishi M; Kappel SL; Kidmose P; Mandic DP; Wang Y; Cheng CK; Jung TP
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():2271-4. PubMed ID: 26736745
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plug&Play Brain-Computer Interfaces for effective Active and Assisted Living control.
    Mora N; De Munari I; Ciampolini P; Del R Millán J
    Med Biol Eng Comput; 2017 Aug; 55(8):1339-1352. PubMed ID: 27858227
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of an SSVEP-based BCI spelling system adopting a QWERTY-style LED keyboard.
    Hwang HJ; Lim JH; Jung YJ; Choi H; Lee SW; Im CH
    J Neurosci Methods; 2012 Jun; 208(1):59-65. PubMed ID: 22580222
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of higher frequency on the classification of steady-state visual evoked potentials.
    Won DO; Hwang HJ; Dähne S; Müller KR; Lee SW
    J Neural Eng; 2016 Feb; 13(1):016014. PubMed ID: 26695712
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Independence of amplitude-frequency and phase calibrations in an SSVEP-based BCI using stepping delay flickering sequences.
    Chang HC; Lee PL; Lo MT; Lee IH; Yeh TK; Chang CY
    IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):305-12. PubMed ID: 22203724
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An Online Brain-Computer Interface Based on SSVEPs Measured From Non-Hair-Bearing Areas.
    Wang YT; Nakanishi M; Wang Y; Wei CS; Cheng CK; Jung TP
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jan; 25(1):11-18. PubMed ID: 27254871
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High Frequency SSVEP-BCI With Hardware Stimuli Control and Phase-Synchronized Comb Filter.
    Chabuda A; Durka P; Zygierewicz J
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):344-352. PubMed ID: 28961117
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative Study of SSVEP- and P300-Based Models for the Telepresence Control of Humanoid Robots.
    Zhao J; Li W; Li M
    PLoS One; 2015; 10(11):e0142168. PubMed ID: 26562524
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.