These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 22255791)

  • 41. Comparative Study of SSVEP- and P300-Based Models for the Telepresence Control of Humanoid Robots.
    Zhao J; Li W; Li M
    PLoS One; 2015; 10(11):e0142168. PubMed ID: 26562524
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components.
    Müller-Putz GR; Scherer R; Brauneis C; Pfurtscheller G
    J Neural Eng; 2005 Dec; 2(4):123-30. PubMed ID: 16317236
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An amplitude-modulated visual stimulation for reducing eye fatigue in SSVEP-based brain-computer interfaces.
    Chang MH; Baek HJ; Lee SM; Park KS
    Clin Neurophysiol; 2014 Jul; 125(7):1380-91. PubMed ID: 24368034
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A speedy hybrid BCI spelling approach combining P300 and SSVEP.
    Yin E; Zhou Z; Jiang J; Chen F; Liu Y; Hu D
    IEEE Trans Biomed Eng; 2014 Feb; 61(2):473-83. PubMed ID: 24058009
    [TBL] [Abstract][Full Text] [Related]  

  • 45. SSVEP-based BCI: A "Plug & play" approach.
    Mora N; De Munari I; Ciampolini P
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6170-3. PubMed ID: 26737701
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A hybrid BCI speller paradigm combining P300 potential and the SSVEP blocking feature.
    Xu M; Qi H; Wan B; Yin T; Liu Z; Ming D
    J Neural Eng; 2013 Apr; 10(2):026001. PubMed ID: 23369924
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Developing stimulus presentation on mobile devices for a truly portable SSVEP-based BCI.
    Wang YT; Wang Y; Cheng CK; Jung TP
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5271-4. PubMed ID: 24110925
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An online multi-channel SSVEP-based brain-computer interface using a canonical correlation analysis method.
    Bin G; Gao X; Yan Z; Hong B; Gao S
    J Neural Eng; 2009 Aug; 6(4):046002. PubMed ID: 19494422
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Direct information transfer rate optimisation for SSVEP-based BCI.
    Ingel A; Kuzovkin I; Vicente R
    J Neural Eng; 2019 Feb; 16(1):016016. PubMed ID: 30523959
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of competing stimuli on SSVEP-based BCI.
    Ng KB; Bradley AP; Cunnington R
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6307-10. PubMed ID: 22255780
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Brain-computer interface research at the wadsworth center developments in noninvasive communication and control.
    Krusienski DJ; Wolpaw JR
    Int Rev Neurobiol; 2009; 86():147-57. PubMed ID: 19607997
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enhancing Performance and Bit Rates in a Brain-Computer Interface System With Phase-to-Amplitude Cross-Frequency Coupling: Evidences From Traditional c-VEP, Fast c-VEP, and SSVEP Designs.
    Dimitriadis SI; Marimpis AD
    Front Neuroinform; 2018; 12():19. PubMed ID: 29867425
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhancing Detection of SSVEPs for a High-Speed Brain Speller Using Task-Related Component Analysis.
    Nakanishi M; Wang Y; Chen X; Wang YT; Gao X; Jung TP
    IEEE Trans Biomed Eng; 2018 Jan; 65(1):104-112. PubMed ID: 28436836
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Clinical feasibility of brain-computer interface based on steady-state visual evoked potential in patients with locked-in syndrome: Case studies.
    Hwang HJ; Han CH; Lim JH; Kim YW; Choi SI; An KO; Lee JH; Cha HS; Hyun Kim S; Im CH
    Psychophysiology; 2017 Mar; 54(3):444-451. PubMed ID: 27914171
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Brain-computer interface technology: a review of the Second International Meeting.
    Vaughan TM; Heetderks WJ; Trejo LJ; Rymer WZ; Weinrich M; Moore MM; Kübler A; Dobkin BH; Birbaumer N; Donchin E; Wolpaw EW; Wolpaw JR
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):94-109. PubMed ID: 12899247
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A new dual-frequency stimulation method to increase the number of visual stimuli for multi-class SSVEP-based brain-computer interface (BCI).
    Hwang HJ; Hwan Kim D; Han CH; Im CH
    Brain Res; 2013 Jun; 1515():66-77. PubMed ID: 23587933
    [TBL] [Abstract][Full Text] [Related]  

  • 57. sBCI: fast detection of steady-state visual evoked potentials.
    Valbuena D; Volosyak I; Graser A
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3966-9. PubMed ID: 21097270
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Multivariate synchronization index for frequency recognition of SSVEP-based brain-computer interface.
    Zhang Y; Xu P; Cheng K; Yao D
    J Neurosci Methods; 2014 Jan; 221():32-40. PubMed ID: 23928153
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Toward a hybrid brain-computer interface based on repetitive visual stimuli with missing events.
    Wu Y; Li M; Wang J
    J Neuroeng Rehabil; 2016 Jul; 13(1):66. PubMed ID: 27460070
    [TBL] [Abstract][Full Text] [Related]  

  • 60. BCI Meeting 2005--workshop on BCI signal processing: feature extraction and translation.
    McFarland DJ; Anderson CW; Müller KR; Schlögl A; Krusienski DJ
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):135-8. PubMed ID: 16792278
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.