These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
86 related articles for article (PubMed ID: 22255811)
1. Supervised regularized canonical correlation analysis: integrating histologic and proteomic data for predicting biochemical failures. Golugula A; Lee G; Master SR; Feldman MD; Tomaszewski JE; Madabhushi A Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6434-7. PubMed ID: 22255811 [TBL] [Abstract][Full Text] [Related]
2. Supervised regularized canonical correlation analysis: integrating histologic and proteomic measurements for predicting biochemical recurrence following prostate surgery. Golugula A; Lee G; Master SR; Feldman MD; Tomaszewski JE; Speicher DW; Madabhushi A BMC Bioinformatics; 2011 Dec; 12():483. PubMed ID: 22182303 [TBL] [Abstract][Full Text] [Related]
3. Supervised multi-view canonical correlation analysis (sMVCCA): integrating histologic and proteomic features for predicting recurrent prostate cancer. Lee G; Singanamalli A; Wang H; Feldman MD; Master SR; Shih NN; Spangler E; Rebbeck T; Tomaszewski JE; Madabhushi A IEEE Trans Med Imaging; 2015 Jan; 34(1):284-97. PubMed ID: 25203987 [TBL] [Abstract][Full Text] [Related]
4. Feature selection and nearest centroid classification for protein mass spectrometry. Levner I BMC Bioinformatics; 2005 Mar; 6():68. PubMed ID: 15788095 [TBL] [Abstract][Full Text] [Related]
5. Computer-aided prognosis: predicting patient and disease outcome via quantitative fusion of multi-scale, multi-modal data. Madabhushi A; Agner S; Basavanhally A; Doyle S; Lee G Comput Med Imaging Graph; 2011; 35(7-8):506-14. PubMed ID: 21333490 [TBL] [Abstract][Full Text] [Related]
6. Selecting features with group-sparse nonnegative supervised canonical correlation analysis: multimodal prostate cancer prognosis. Wang H; Singanamalli A; Ginsburg S; Madabhushi A Med Image Comput Comput Assist Interv; 2014; 17(Pt 3):385-92. PubMed ID: 25320823 [TBL] [Abstract][Full Text] [Related]
7. Dimensionality reduction-based fusion approaches for imaging and non-imaging biomedical data: concepts, workflow, and use-cases. Viswanath SE; Tiwari P; Lee G; Madabhushi A; BMC Med Imaging; 2017 Jan; 17(1):2. PubMed ID: 28056889 [TBL] [Abstract][Full Text] [Related]
8. Spatially weighted mutual information (SWMI) for registration of digitally reconstructed ex vivo whole mount histology and in vivo prostate MRI. Patel P; Chappelow J; Tomaszewski J; Feldman MD; Rosen M; Shih N; Madabhushi A Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6269-72. PubMed ID: 22255771 [TBL] [Abstract][Full Text] [Related]
9. MULTI-MODAL DATA FUSION SCHEMES FOR INTEGRATED CLASSIFICATION OF IMAGING AND NON-IMAGING BIOMEDICAL DATA. Tiwari P; Viswanath S; Lee G; Madabhushi A Proc IEEE Int Symp Biomed Imaging; 2011; 2011():165-168. PubMed ID: 25705325 [TBL] [Abstract][Full Text] [Related]
10. More advantages in detecting bone and soft tissue metastases from prostate cancer using Pianou NK; Stavrou PZ; Vlontzou E; Rondogianni P; Exarhos DN; Datseris IE Hell J Nucl Med; 2019; 22(1):6-9. PubMed ID: 30843003 [TBL] [Abstract][Full Text] [Related]
12. Validation of a Genomic Classifier for Predicting Post-Prostatectomy Recurrence in a Community Based Health Care Setting. Glass AG; Leo MC; Haddad Z; Yousefi K; du Plessis M; Chen C; Choeurng V; Abdollah F; Robbins B; Ra S; Richert-Boe KE; Buerki C; Pearson K; Davicioni E; Weinmann S J Urol; 2016 Jun; 195(6):1748-53. PubMed ID: 26626216 [TBL] [Abstract][Full Text] [Related]
13. Systems pathology approach for the prediction of prostate cancer progression after radical prostatectomy. Donovan MJ; Hamann S; Clayton M; Khan FM; Sapir M; Bayer-Zubek V; Fernandez G; Mesa-Tejada R; Teverovskiy M; Reuter VE; Scardino PT; Cordon-Cardo C J Clin Oncol; 2008 Aug; 26(24):3923-9. PubMed ID: 18711180 [TBL] [Abstract][Full Text] [Related]
14. Cell orientation entropy (COrE): predicting biochemical recurrence from prostate cancer tissue microarrays. Lee G; Ali S; Veltri R; Epstein JI; Christudass C; Madabhushi A Med Image Comput Comput Assist Interv; 2013; 16(Pt 3):396-403. PubMed ID: 24505786 [TBL] [Abstract][Full Text] [Related]
15. Use of machine learning to predict early biochemical recurrence after robot-assisted prostatectomy. Wong NC; Lam C; Patterson L; Shayegan B BJU Int; 2019 Jan; 123(1):51-57. PubMed ID: 29969172 [TBL] [Abstract][Full Text] [Related]
16. Spectral embedding based probabilistic boosting tree (ScEPTre): classifying high dimensional heterogeneous biomedical data. Tiwari P; Rosen M; Reed G; Kurhanewicz J; Madabhushi A Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):844-51. PubMed ID: 20426190 [TBL] [Abstract][Full Text] [Related]
17. Detection of prostate cancer by integration of line-scan diffusion, T2-mapping and T2-weighted magnetic resonance imaging; a multichannel statistical classifier. Chan I; Wells W; Mulkern RV; Haker S; Zhang J; Zou KH; Maier SE; Tempany CM Med Phys; 2003 Sep; 30(9):2390-8. PubMed ID: 14528961 [TBL] [Abstract][Full Text] [Related]
18. Nuclear Shape and Architecture in Benign Fields Predict Biochemical Recurrence in Prostate Cancer Patients Following Radical Prostatectomy: Preliminary Findings. Lee G; Veltri RW; Zhu G; Ali S; Epstein JI; Madabhushi A Eur Urol Focus; 2017 Oct; 3(4-5):457-466. PubMed ID: 28753763 [TBL] [Abstract][Full Text] [Related]
19. Dynamic incorporation of prior knowledge from multiple domains in biomarker discovery. Guan X; Runger G; Liu L BMC Bioinformatics; 2020 Mar; 21(Suppl 2):77. PubMed ID: 32164534 [TBL] [Abstract][Full Text] [Related]
20. Machine learning approaches to analyze histological images of tissues from radical prostatectomies. Gertych A; Ing N; Ma Z; Fuchs TJ; Salman S; Mohanty S; Bhele S; Velásquez-Vacca A; Amin MB; Knudsen BS Comput Med Imaging Graph; 2015 Dec; 46 Pt 2(Pt 2):197-208. PubMed ID: 26362074 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]