These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 22255892)

  • 1. Cortical mapping of the optically evoked responses in channelrhodopsin-2 mouse model.
    Kim GB; Cho JR; Shin HS; Choi JH
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6769-72. PubMed ID: 22255892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optogenetic analysis of neuronal excitability during global ischemia reveals selective deficits in sensory processing following reperfusion in mouse cortex.
    Chen S; Mohajerani MH; Xie Y; Murphy TH
    J Neurosci; 2012 Sep; 32(39):13510-9. PubMed ID: 23015440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated light-based mapping of motor cortex by photoactivation of channelrhodopsin-2 transgenic mice.
    Ayling OG; Harrison TC; Boyd JD; Goroshkov A; Murphy TH
    Nat Methods; 2009 Mar; 6(3):219-24. PubMed ID: 19219033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcranial optogenetic stimulation for functional mapping of the motor cortex.
    Hira R; Honkura N; Noguchi J; Maruyama Y; Augustine GJ; Kasai H; Matsuzaki M
    J Neurosci Methods; 2009 May; 179(2):258-63. PubMed ID: 19428535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconfigurable nanophotonic silicon probes for sub-millisecond deep-brain optical stimulation.
    Mohanty A; Li Q; Tadayon MA; Roberts SP; Bhatt GR; Shim E; Ji X; Cardenas J; Miller SA; Kepecs A; Lipson M
    Nat Biomed Eng; 2020 Feb; 4(2):223-231. PubMed ID: 32051578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections.
    Petreanu L; Huber D; Sobczyk A; Svoboda K
    Nat Neurosci; 2007 May; 10(5):663-8. PubMed ID: 17435752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A neurophotonic device for stimulation and recording of neural microcircuits.
    Wang J; Borton DA; Zhang J; Burwell RD; Nurmikko AV
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2935-8. PubMed ID: 21095989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology.
    Aravanis AM; Wang LP; Zhang F; Meltzer LA; Mogri MZ; Schneider MB; Deisseroth K
    J Neural Eng; 2007 Sep; 4(3):S143-56. PubMed ID: 17873414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of channelrhodopsin for activation of CNS neurons.
    Britt JP; McDevitt RA; Bonci A
    Curr Protoc Neurosci; 2012; Chapter 2():Unit2.16. PubMed ID: 23042500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-speed mapping of synaptic connectivity using photostimulation in Channelrhodopsin-2 transgenic mice.
    Wang H; Peca J; Matsuzaki M; Matsuzaki K; Noguchi J; Qiu L; Wang D; Zhang F; Boyden E; Deisseroth K; Kasai H; Hall WC; Feng G; Augustine GJ
    Proc Natl Acad Sci U S A; 2007 May; 104(19):8143-8. PubMed ID: 17483470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prolonged deficits in parvalbumin neuron stimulation-evoked network activity despite recovery of dendritic structure and excitability in the somatosensory cortex following global ischemia in mice.
    Xie Y; Chen S; Wu Y; Murphy TH
    J Neurosci; 2014 Nov; 34(45):14890-900. PubMed ID: 25378156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual-channel circuit mapping reveals sensorimotor convergence in the primary motor cortex.
    Hooks BM; Lin JY; Guo C; Svoboda K
    J Neurosci; 2015 Mar; 35(10):4418-26. PubMed ID: 25762684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping Anatomy to Behavior in Thy1:18 ChR2-YFP Transgenic Mice Using Optogenetics.
    Fenno LE; Gunaydin LA; Deisseroth K
    Cold Spring Harb Protoc; 2015 Jun; 2015(6):537-48. PubMed ID: 26034299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatio-temporal control of neural activity in vivo using fluorescence microendoscopy.
    Hayashi Y; Tagawa Y; Yawata S; Nakanishi S; Funabiki K
    Eur J Neurosci; 2012 Sep; 36(6):2722-32. PubMed ID: 22780218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optogenetic stimulation of GABA neurons can decrease local neuronal activity while increasing cortical blood flow.
    Anenberg E; Chan AW; Xie Y; LeDue JM; Murphy TH
    J Cereb Blood Flow Metab; 2015 Oct; 35(10):1579-86. PubMed ID: 26082013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The cortical representation of the hand in macaque and human area S-I: high resolution optical imaging.
    Shoham D; Grinvald A
    J Neurosci; 2001 Sep; 21(17):6820-35. PubMed ID: 11517270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Properties of an optogenetic model for olfactory stimulation.
    Genovese F; Thews M; Möhrlen F; Frings S
    J Physiol; 2016 Jul; 594(13):3501-16. PubMed ID: 26857095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mouse model for studying large-scale neuronal networks using EEG mapping techniques.
    Mégevand P; Quairiaux C; Lascano AM; Kiss JZ; Michel CM
    Neuroimage; 2008 Aug; 42(2):591-602. PubMed ID: 18585931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cortical source localization of mouse extracranial electroencephalogram using the FieldTrip toolbox.
    Lee C; Oostenveld R; Lee SH; Kim LH; Sung H; Choi JH
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3307-10. PubMed ID: 24110435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Spatial Extent of Optogenetic Silencing in Transgenic Mice Expressing Channelrhodopsin in Inhibitory Interneurons.
    Babl SS; Rummell BP; Sigurdsson T
    Cell Rep; 2019 Oct; 29(5):1381-1395.e4. PubMed ID: 31665647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.