BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 22255977)

  • 1. Artificial neural network based intracranial pressure mean forecast algorithm for medical decision support.
    Zhang F; Feng M; Pan SJ; Loy LY; Guo W; Zhang Z; Chin PL; Guan C; King NK; Ang BT
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7111-4. PubMed ID: 22255977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Analysis of intracranial pressure signals using artificial neural networks].
    Mariak Z; Swiercz M; Krejza J; Lewko J; Lyson T
    Neurol Neurochir Pol; 2000; 34(6):1209-23. PubMed ID: 11317497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracranial pressure processing with artificial neural networks: prediction of ICP trends.
    Swiercz M; Mariak Z; Krejza J; Lewko J; Szydlik P
    Acta Neurochir (Wien); 2000; 142(4):401-6. PubMed ID: 10883336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear regression for sub-peak detection of intracranial pressure signals.
    Scalzo F; Xu P; Bergsneider M; Hu X
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5411-4. PubMed ID: 19163941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forecasting intracranial pressure elevation using pulse waveform morphology.
    Hamilton R; Xu P; Asgari S; Kasprowicz M; Vespa P; Bergsneider M; Hu X
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4331-4. PubMed ID: 19963821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of simultaneous continuous intracranial pressure (ICP) signals from a Codman and a Camino ICP sensor.
    Eide PK
    Med Eng Phys; 2006 Jul; 28(6):542-9. PubMed ID: 16253539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Forecasting ICP elevation based on prescient changes of intracranial pressure waveform morphology.
    Hu X; Xu P; Asgari S; Vespa P; Bergsneider M
    IEEE Trans Biomed Eng; 2010 May; 57(5):1070-8. PubMed ID: 20659820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Standardized management of intracranial pressure: a preliminary clinical trial.
    McKinley BA; Parmley CL; Tonneson AS
    J Trauma; 1999 Feb; 46(2):271-9. PubMed ID: 10029033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracranial pressure processing with artificial neural networks: classification of signal properties.
    Mariak Z; Swiercz M; Krejza J; Lewko J; Lyson T
    Acta Neurochir (Wien); 2000; 142(4):407-11; discussion 411-2. PubMed ID: 10883337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time Series Analysis and Prediction of Intracranial Pressure Using Time-Varying Dynamic Linear Models.
    Shaw M; Hawthorne C; Moss L; Kommer M; O'Kane R; Piper I;
    Acta Neurochir Suppl; 2021; 131():225-229. PubMed ID: 33839849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new method for processing of continuous intracranial pressure signals.
    Eide PK
    Med Eng Phys; 2006 Jul; 28(6):579-87. PubMed ID: 16275153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural network technique for detecting emergency states in neurosurgical patients.
    Swiercz M; Mariak Z; Lewko J; Chojnacki K; Kozlowski A; Piekarski P
    Med Biol Eng Comput; 1998 Nov; 36(6):717-22. PubMed ID: 10367462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short-term acoustic forecasting via artificial neural networks for neonatal intensive care units.
    Young J; Macke CJ; Tsoukalas LH
    J Acoust Soc Am; 2012 Nov; 132(5):3234-9. PubMed ID: 23145607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Artificial neural network forecasting method in monitoring technique by spectrometric oil analysis].
    Yang YW; Chen G; Yang YW; Chen G
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Aug; 25(8):1339-43. PubMed ID: 16329517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regression analysis for peak designation in pulsatile pressure signals.
    Scalzo F; Xu P; Asgari S; Bergsneider M; Hu X
    Med Biol Eng Comput; 2009 Sep; 47(9):967-77. PubMed ID: 19578916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracranial hypertension prediction using extremely randomized decision trees.
    Scalzo F; Hamilton R; Asgari S; Kim S; Hu X
    Med Eng Phys; 2012 Oct; 34(8):1058-65. PubMed ID: 22401795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optic nerve sheath diameter: present and future perspectives for neurologists and critical care physicians.
    Lochner P; Czosnyka M; Naldi A; Lyros E; Pelosi P; Mathur S; Fassbender K; Robba C
    Neurol Sci; 2019 Dec; 40(12):2447-2457. PubMed ID: 31367861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of childhood intracranial pressure recordings using a new method of processing intracranial pressure signals.
    Eide PK
    Pediatr Neurosurg; 2005; 41(3):122-30. PubMed ID: 15995328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance assessment of artificial neural networks and support vector regression models for stream flow predictions.
    Ateeq-Ur-Rauf ; Ghumman AR; Ahmad S; Hashmi HN
    Environ Monit Assess; 2018 Nov; 190(12):704. PubMed ID: 30406854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emergency Neurological Life Support: Intracranial Hypertension and Herniation.
    Cadena R; Shoykhet M; Ratcliff JJ
    Neurocrit Care; 2017 Sep; 27(Suppl 1):82-88. PubMed ID: 28913634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.