BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 22256015)

  • 1. Visuomotor discordance in virtual reality: effects on online motor control.
    Bagce HF; Saleh S; Adamovich SV; Tunik E
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7262-5. PubMed ID: 22256015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visuomotor gain distortion alters online motor performance and enhances primary motor cortex excitability in patients with stroke.
    Bagce HF; Saleh S; Adamovich SV; Tunik E
    Neuromodulation; 2012 Jul; 15(4):361-6. PubMed ID: 22672345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visuomotor discordance during visually-guided hand movement in virtual reality modulates sensorimotor cortical activity in healthy and hemiparetic subjects.
    Tunik E; Saleh S; Adamovich SV
    IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):198-207. PubMed ID: 23314780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time modulation of visual feedback on human full-body movements in a virtual mirror: development and proof-of-concept.
    Roosink M; Robitaille N; McFadyen BJ; Hébert LJ; Jackson PL; Bouyer LJ; Mercier C
    J Neuroeng Rehabil; 2015 Jan; 12(1):2. PubMed ID: 25558785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reaching within video-capture virtual reality: using virtual reality as a motor control paradigm.
    Dvorkin AY; Shahar M; Weiss PL
    Cyberpsychol Behav; 2006 Apr; 9(2):133-6. PubMed ID: 16640465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using Virtual Reality to Transfer Motor Skill Knowledge from One Hand to Another.
    Ossmy O; Mukamel R
    J Vis Exp; 2017 Sep; (127):. PubMed ID: 28994768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Virtual Hand Feedback Reduces Reaction Time in an Interactive Finger Reaching Task.
    Brand J; Piccirelli M; Hepp-Reymond MC; Morari M; Michels L; Eng K
    PLoS One; 2016; 11(5):e0154807. PubMed ID: 27144927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A virtual reality-based system integrated with fmri to study neural mechanisms of action observation-execution: a proof of concept study.
    Adamovich SV; August K; Merians A; Tunik E
    Restor Neurol Neurosci; 2009; 27(3):209-23. PubMed ID: 19531876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptation and spatial generalization to a triaxial visuomotor perturbation in a virtual reality environment.
    Lefrançois C; Messier J
    Exp Brain Res; 2019 Mar; 237(3):793-803. PubMed ID: 30607472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Going offline: differences in the contributions of movement control processes when reaching in a typical versus novel environment.
    Wijeyaratnam DO; Chua R; Cressman EK
    Exp Brain Res; 2019 Jun; 237(6):1431-1444. PubMed ID: 30895342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short Term Motor-Skill Acquisition Improves with Size of Self-Controlled Virtual Hands.
    Ossmy O; Mukamel R
    PLoS One; 2017; 12(1):e0168520. PubMed ID: 28056023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using a virtual reality temporal bone simulator to assess otolaryngology trainees.
    Zirkle M; Roberson DW; Leuwer R; Dubrowski A
    Laryngoscope; 2007 Feb; 117(2):258-63. PubMed ID: 17204992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mirrored feedback in chronic stroke: recruitment and effective connectivity of ipsilesional sensorimotor networks.
    Saleh S; Adamovich SV; Tunik E
    Neurorehabil Neural Repair; 2014 May; 28(4):344-54. PubMed ID: 24370569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cognitive loading affects motor awareness and movement kinematics but not locomotor trajectories during goal-directed walking in a virtual reality environment.
    Kannape OA; Barré A; Aminian K; Blanke O
    PLoS One; 2014; 9(1):e85560. PubMed ID: 24465601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A data glove with tactile feedback for FMRI of virtual reality experiments.
    Ku J; Mraz R; Baker N; Zakzanis KK; Lee JH; Kim IY; Kim SI; Graham SJ
    Cyberpsychol Behav; 2003 Oct; 6(5):497-508. PubMed ID: 14583125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feedback and feedforward adaptation to visuomotor delay during reaching and slicing movements.
    Botzer L; Karniel A
    Eur J Neurosci; 2013 Jul; 38(1):2108-23. PubMed ID: 23701418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of task-related continuous auditory feedback during learning of tracking motion exercises.
    Rosati G; Oscari F; Spagnol S; Avanzini F; Masiero S
    J Neuroeng Rehabil; 2012 Oct; 9():79. PubMed ID: 23046683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of roll visual motion on online control of arm movement: reaching within a dynamic virtual environment.
    Dvorkin AY; Kenyon RV; Keshner EA
    Exp Brain Res; 2009 Feb; 193(1):95-107. PubMed ID: 18936925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of an augmented virtual reality and haptic control interface for psychomotor training.
    Kaber D; Tupler LA; Clamann M; Gil GH; Zhu B; Swangnetr M; Jeon W; Zhang Y; Qin X; Ma W; Lee YS
    Assist Technol; 2014; 26(1):51-60. PubMed ID: 24800454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuronal correlates of continuous manual tracking under varying visual movement feedback in a virtual reality environment.
    Limanowski J; Kirilina E; Blankenburg F
    Neuroimage; 2017 Feb; 146():81-89. PubMed ID: 27845254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.