These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 22256015)

  • 21. Parietal Activation Associated With Target-Directed Right Hand Movement Is Lateralized by Mirror Feedback to the Ipsilateral Hemisphere.
    Manuweera T; Yarossi M; Adamovich S; Tunik E
    Front Hum Neurosci; 2018; 12():531. PubMed ID: 30687047
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of Immersive Virtual Reality Headset Viewing on Young Children: Visuomotor Function, Postural Stability, and Motion Sickness.
    Tychsen L; Foeller P
    Am J Ophthalmol; 2020 Jan; 209():151-159. PubMed ID: 31377280
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Network interactions underlying mirror feedback in stroke: A dynamic causal modeling study.
    Saleh S; Yarossi M; Manuweera T; Adamovich S; Tunik E
    Neuroimage Clin; 2017; 13():46-54. PubMed ID: 27920978
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Acquisition of individuated finger movements through musical practice.
    Furuya S; Nakamura A; Nagata N
    Neuroscience; 2014 Sep; 275():444-54. PubMed ID: 24973654
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two modes of error processing in reaching.
    Magescas F; Urquizar C; Prablanc C
    Exp Brain Res; 2009 Mar; 193(3):337-50. PubMed ID: 19011846
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Control of aperture closure during reach-to-grasp movements in immersive haptic-free virtual reality.
    Mangalam M; Yarossi M; Furmanek MP; Tunik E
    Exp Brain Res; 2021 May; 239(5):1651-1665. PubMed ID: 33774688
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impaired short-term motor learning in multiple sclerosis: evidence from virtual reality.
    Leocani L; Comi E; Annovazzi P; Rovaris M; Rossi P; Cursi M; Comola M; Martinelli V; Comi G
    Neurorehabil Neural Repair; 2007; 21(3):273-8. PubMed ID: 17351084
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Training finger individuation with a mechatronic-virtual reality system leads to improved fine motor control post-stroke.
    Thielbar KO; Lord TJ; Fischer HC; Lazzaro EC; Barth KC; Stoykov ME; Triandafilou KM; Kamper DG
    J Neuroeng Rehabil; 2014 Dec; 11():171. PubMed ID: 25542201
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel virtual reality system integrating online self-face viewing and mirror visual feedback for stroke rehabilitation: rationale and feasibility.
    Shiri S; Feintuch U; Lorber-Haddad A; Moreh E; Twito D; Tuchner-Arieli M; Meiner Z
    Top Stroke Rehabil; 2012; 19(4):277-86. PubMed ID: 22750957
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design of Virtual Guiding Tasks With Haptic Feedback for Assessing the Wrist Motor Function of Patients With Upper Motor Neuron Lesions.
    Liu X; Zhu Y; Huo H; Wei P; Wang L; Sun A; Hu C; Yin X; Lv Z; Fan Y
    IEEE Trans Neural Syst Rehabil Eng; 2019 May; 27(5):984-994. PubMed ID: 30969927
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adaptation to visual feedback delay in a redundant motor task.
    Farshchiansadegh A; Ranganathan R; Casadio M; Mussa-Ivaldi FA
    J Neurophysiol; 2015 Jan; 113(2):426-33. PubMed ID: 25339704
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of grasping movements made by healthy subjects in a 3-dimensional immersive virtual versus physical environment.
    Magdalon EC; Michaelsen SM; Quevedo AA; Levin MF
    Acta Psychol (Amst); 2011 Sep; 138(1):126-34. PubMed ID: 21684505
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Virtual reality-augmented rehabilitation for patients following stroke.
    Merians AS; Jack D; Boian R; Tremaine M; Burdea GC; Adamovich SV; Recce M; Poizner H
    Phys Ther; 2002 Sep; 82(9):898-915. PubMed ID: 12201804
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Combined virtual reality and haptic robotics induce space and movement invariant sensorimotor adaptation.
    Wilf M; Cerra Cheraka M; Jeanneret M; Ott R; Perrin H; Crottaz-Herbette S; Serino A
    Neuropsychologia; 2021 Jan; 150():107692. PubMed ID: 33232695
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of an external focus of attention and target occlusion on performance in virtual reality.
    Cochran SM; Aiken CA; Rhea CK; Raisbeck LD
    Hum Mov Sci; 2021 Apr; 76():102753. PubMed ID: 33450639
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simultaneous coordinate representations are influenced by visual feedback in a motor learning task.
    Parmar PN; Huang FC; Patton JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6762-8. PubMed ID: 22255891
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Movement kinematic and postural control differences when performing a visuomotor skill in real and virtual environments.
    Brock K; Vine SJ; Ross JM; Trevarthen M; Harris DJ
    Exp Brain Res; 2023 Jul; 241(7):1797-1810. PubMed ID: 37222777
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of visual feedback persistence on visuo-motor skill improvement.
    Unell A; Eisenstat ZM; Braun A; Gandhi A; Gilad-Gutnick S; Ben-Ami S; Sinha P
    Sci Rep; 2021 Aug; 11(1):17347. PubMed ID: 34462516
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Performance Improvement and Skill Transfer in Table Tennis Through Training in Virtual Reality.
    Oagaz H; Schoun B; Choi MH
    IEEE Trans Vis Comput Graph; 2022 Dec; 28(12):4332-4343. PubMed ID: 34081582
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of dominant hand range of motion among throwing types in baseball pitchers.
    Wang LH; Kuo LC; Shih SW; Lo KC; Su FC
    Hum Mov Sci; 2013 Aug; 32(4):719-29. PubMed ID: 23764035
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.