BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 22256024)

  • 1. Real-time neuronal networks reconstruction using hierarchical systolic arrays.
    Yu B; Mak T; Sun Y; Poon CS
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7298-301. PubMed ID: 22256024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-chip systolic networks for real-time tracking of pairwise correlations between neurons in a large-scale network.
    Yu B; Chan RH; Mak T; Sun Y; Poon CS
    IEEE Trans Biomed Eng; 2013 Jan; 60(1):198-202. PubMed ID: 22851232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parallel field programmable gate array particle filtering architecture for real-time neural signal processing.
    Mountney J; Silage D; Obeid I
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2674-7. PubMed ID: 21096196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards neuro-silicon interface using reconfigurable dynamic clamping.
    Luo JW; Mak T; Yu B; Andras P; Yakovlev A
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6389-92. PubMed ID: 22255800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scalable Digital Neuromorphic Architecture for Large-Scale Biophysically Meaningful Neural Network With Multi-Compartment Neurons.
    Yang S; Deng B; Wang J; Li H; Lu M; Che Y; Wei X; Loparo KA
    IEEE Trans Neural Netw Learn Syst; 2020 Jan; 31(1):148-162. PubMed ID: 30892250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An FPGA hardware/software co-design towards evolvable spiking neural networks for robotics application.
    Johnston SP; Prasad G; Maguire L; McGinnity TM
    Int J Neural Syst; 2010 Dec; 20(6):447-61. PubMed ID: 21117269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acceleration of fiber tracking in DTI tractography by reconfigurable computer hardware.
    Singh M; Kwatra A; Wong CW; Prasanna V
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4819-22. PubMed ID: 17947118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Event management for large scale event-driven digital hardware spiking neural networks.
    Caron LC; D'Haene M; Mailhot F; Schrauwen B; Rouat J
    Neural Netw; 2013 Sep; 45():83-93. PubMed ID: 23522624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Field-programmable gate array implementation of a probabilistic neural network for motor cortical decoding in rats.
    Zhou F; Liu J; Yu Y; Tian X; Liu H; Hao Y; Zhang S; Chen W; Dai J; Zheng X
    J Neurosci Methods; 2010 Jan; 185(2):299-306. PubMed ID: 19879294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FPNA: interaction between FPGA and neural computation.
    Girau B
    Int J Neural Syst; 2000 Jun; 10(3):243-59. PubMed ID: 11011795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Thalamocortical Neural Mass Model Simulation and Study Based on Field Programmable Gate Array].
    Liang Z; Zhou J; Li X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Aug; 33(4):616-25. PubMed ID: 29714455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hardware implementation of stochastic spiking neural networks.
    Rosselló JL; Canals V; Morro A; Oliver A
    Int J Neural Syst; 2012 Aug; 22(4):1250014. PubMed ID: 22830964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modular particle filtering FPGA hardware architecture for brain machine interfaces.
    Mountney J; Obeid I; Silage D
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4617-20. PubMed ID: 22255366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synchronization of Hindmarsh Rose Neurons.
    S A M; A H M
    Neural Netw; 2020 Mar; 123():372-380. PubMed ID: 31901566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FPGA implementation of hardware processing modules as coprocessors in brain-machine interfaces.
    Wang D; Hao Y; Zhu X; Zhao T; Wang Y; Chen Y; Chen W; Zheng X
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4613-6. PubMed ID: 22255365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time prediction of neuronal population spiking activity using FPGA.
    Li WX; Cheung RC; Chan RH; Song D; Berger TW
    IEEE Trans Biomed Circuits Syst; 2013 Aug; 7(4):489-98. PubMed ID: 23893208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Runtime Programmable and Memory Bandwidth Optimized FPGA-Based Coprocessor for Deep Convolutional Neural Network.
    Shah N; Chaudhari P; Varghese K
    IEEE Trans Neural Netw Learn Syst; 2018 Dec; 29(12):5922-5934. PubMed ID: 29993989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization and implementation of scaling-free CORDIC-based direct digital frequency synthesizer for body care area network systems.
    Juang YS; Ko LT; Chen JE; Sung TY; Hsin HC
    Comput Math Methods Med; 2012; 2012():651564. PubMed ID: 23251230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wearable FPGA based wireless sensor platform.
    Ahola T; Korpinen P; Rakkola J; Rämö T; Salminen J; Savolainen J
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2288-91. PubMed ID: 18002448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cost-efficient FPGA implementation of basal ganglia and their Parkinsonian analysis.
    Yang S; Wang J; Li S; Deng B; Wei X; Yu H; Li H
    Neural Netw; 2015 Nov; 71():62-75. PubMed ID: 26318085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.