These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 22256045)

  • 1. A fuzzy-based shared controller for brain-actuated simulated robotic system.
    Liu R; Xue KZ; Wang YX; Yang L
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7384-7. PubMed ID: 22256045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An FDES-Based Shared Control Method for Asynchronous Brain-Actuated Robot.
    Liu R; Wang YX; Zhang L
    IEEE Trans Cybern; 2016 Jun; 46(6):1452-62. PubMed ID: 26357416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assisted navigation based on shared-control, using discrete and sparse human-machine interfaces.
    Lopes AC; Nunes U; Vaz L; Vaz L
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():471-4. PubMed ID: 21095885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Behavior coordination of mobile robotics using supervisory control of fuzzy discrete event systems.
    Jayasiri A; Mann GK; Gosine RG
    IEEE Trans Syst Man Cybern B Cybern; 2011 Oct; 41(5):1224-38. PubMed ID: 21421445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fuzzy auto-tuning PID control of multiple joint robot driven by ultrasonic motors.
    Sun Z; Xing R; Zhao C; Huang W
    Ultrasonics; 2007 Nov; 46(4):303-12. PubMed ID: 17540429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a fuzzy logic based intelligent system for autonomous guidance of post-stroke rehabilitation exercise.
    Huq R; Wang R; Lu E; Hebert D; Lacheray H; Mihailidis A
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650472. PubMed ID: 24187289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive fuzzy neural network control design via a T-S fuzzy model for a robot manipulator including actuator dynamics.
    Wai RJ; Yang ZW
    IEEE Trans Syst Man Cybern B Cybern; 2008 Oct; 38(5):1326-46. PubMed ID: 18784015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel hybrid adaptive controller for manipulation in complex perturbation environments.
    Smith AM; Yang C; Ma H; Culverhouse P; Cangelosi A; Burdet E
    PLoS One; 2015; 10(6):e0129281. PubMed ID: 26029916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A rehabilitation robot with force-position hybrid fuzzy controller: hybrid fuzzy control of rehabilitation robot.
    Ju MS; Lin CC; Lin DH; Hwang IS; Chen SM
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):349-58. PubMed ID: 16200758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supervisory controller design for a robot-assisted reach-to-grasp rehabilitation task.
    Wang F; Sarkar N
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4258-61. PubMed ID: 19163653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Fuzzy Integral Ensemble Method in Visual P300 Brain-Computer Interface.
    Cavrini F; Bianchi L; Quitadamo LR; Saggio G
    Comput Intell Neurosci; 2016; 2016():9845980. PubMed ID: 26819595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New hybrid adaptive neuro-fuzzy algorithms for manipulator control with uncertainties- comparative study.
    Alavandar S; Nigam MJ
    ISA Trans; 2009 Oct; 48(4):497-502. PubMed ID: 19523623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advanced Interval Type-2 Fuzzy Sliding Mode Control for Robot Manipulator.
    Hwang JH; Kang YC; Park JW; Kim DW
    Comput Intell Neurosci; 2017; 2017():9640849. PubMed ID: 28280505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on a miniature robotic system for active monitoring in the human respiratory tract.
    Zan P; Yan G; Huang B
    J Med Eng Technol; 2009; 33(1):25-32. PubMed ID: 19116851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Bayesian Shared Control Approach for Wheelchair Robot With Brain Machine Interface.
    Deng X; Yu ZL; Lin C; Gu Z; Li Y
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jan; 28(1):328-338. PubMed ID: 31825869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Walking motion generation, synthesis, and control for biped robot by using PGRL, LPI, and fuzzy logic.
    Li TH; Su YT; Lai SW; Hu JJ
    IEEE Trans Syst Man Cybern B Cybern; 2011 Jun; 41(3):736-48. PubMed ID: 21095871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RUPERT closed loop control design.
    Balasubramanian S; Wei R; He J
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3467-70. PubMed ID: 19163455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new brain-computer interface design using fuzzy ARTMAP.
    Palaniappan R; Paramesran R; Nishida S; Saiwaki N
    IEEE Trans Neural Syst Rehabil Eng; 2002 Sep; 10(3):140-8. PubMed ID: 12503778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A two-class self-paced BCI to control a robot in four directions.
    Ron-Angevin R; Velasco-Alvarez F; Sancha-Ros S; da Silva-Sauer L
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975486. PubMed ID: 22275683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a GA-fuzzy-immune PID controller with incomplete derivation for robot dexterous hand.
    Liu XH; Chen XH; Zheng XH; Li SP; Wang ZB
    ScientificWorldJournal; 2014; 2014():564137. PubMed ID: 25097881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.