These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 22256054)

  • 21. SSVEP-based Experimental Procedure for Brain-Robot Interaction with Humanoid Robots.
    Zhao J; Li W; Mao X; Li M
    J Vis Exp; 2015 Nov; (105):. PubMed ID: 26650051
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Brain Computer Interface based robotic rehabilitation with online modification of task speed.
    Sarac M; Koyas E; Erdogan A; Cetin M; Patoglu V
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650423. PubMed ID: 24187241
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Noninvasive brain-actuated control of a mobile robot by human EEG.
    Millán Jdel R; Renkens F; Mouriño J; Gerstner W
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):1026-33. PubMed ID: 15188874
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Perspectives on usability and accessibility of an autonomous humanoid robot living with elderly people.
    Fattal C; Cossin I; Pain F; Haize E; Marissael C; Schmutz S; Ocnarescu I
    Disabil Rehabil Assist Technol; 2022 May; 17(4):418-430. PubMed ID: 32643466
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Increasing N200 Potentials Via Visual Stimulus Depicting Humanoid Robot Behavior.
    Li M; Li W; Zhou H
    Int J Neural Syst; 2016 Feb; 26(1):1550039. PubMed ID: 26621216
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhancement of motor-imagery ability via combined action observation and motor-imagery training with proprioceptive neurofeedback.
    Ono Y; Wada K; Kurata M; Seki N
    Neuropsychologia; 2018 Jun; 114():134-142. PubMed ID: 29698736
    [TBL] [Abstract][Full Text] [Related]  

  • 27. iSpike: a spiking neural interface for the iCub robot.
    Gamez D; Fidjeland AK; Lazdins E
    Bioinspir Biomim; 2012 Jun; 7(2):025008. PubMed ID: 22617339
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Continuous shared control for stabilizing reaching and grasping with brain-machine interfaces.
    Kim HK; Biggs SJ; Schloerb DW; Carmena JM; Lebedev MA; Nicolelis MA; Srinivasan MA
    IEEE Trans Biomed Eng; 2006 Jun; 53(6):1164-73. PubMed ID: 16761843
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel system of SSVEP-based human-robot coordination.
    Han X; Lin K; Gao S; Gao X
    J Neural Eng; 2019 Feb; 16(1):016006. PubMed ID: 30221626
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Motor imagery task classification for brain computer interface applications using spatiotemporal principle component analysis.
    Vallabhaneni A; He B
    Neurol Res; 2004 Apr; 26(3):282-7. PubMed ID: 15142321
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel Morse code-inspired method for multiclass motor imagery brain-computer interface (BCI) design.
    Jiang J; Zhou Z; Yin E; Yu Y; Liu Y; Hu D
    Comput Biol Med; 2015 Nov; 66():11-9. PubMed ID: 26340647
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Towards IoT-Aided Human-Robot Interaction Using NEP and ROS: A Platform-Independent, Accessible and Distributed Approach.
    Coronado E; Venture G
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32182906
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A hybrid CPG-ZMP control system for stable walking of a simulated flexible spine humanoid robot.
    Or J
    Neural Netw; 2010 Apr; 23(3):452-60. PubMed ID: 20031370
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Role of Audio-Visual Feedback in a Thought-Based Control of a Humanoid Robot: A BCI Study in Healthy and Spinal Cord Injured People.
    Tidoni E; Gergondet P; Fusco G; Kheddar A; Aglioti SM
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):772-781. PubMed ID: 28113631
    [TBL] [Abstract][Full Text] [Related]  

  • 35. My thoughts through a robot's eyes: an augmented reality-brain-machine interface.
    Kansaku K; Hata N; Takano K
    Neurosci Res; 2010 Feb; 66(2):219-22. PubMed ID: 19853630
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An SSVEP based BCI to control a humanoid robot by using portable EEG device.
    Güneysu A; Akin HL
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6905-8. PubMed ID: 24111332
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hybrid gaze/EEG brain computer interface for robot arm control on a pick and place task.
    Haofei Wang ; Xujiong Dong ; Zhaokang Chen ; Shi BE
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1476-9. PubMed ID: 26736549
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantitative EEG Evaluation During Robot-Assisted Foot Movement.
    Formaggio E; Masiero S; Bosco A; Izzi F; Piccione F; Del Felice A
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1633-1640. PubMed ID: 27845668
    [TBL] [Abstract][Full Text] [Related]  

  • 39. EEG-based classification of imaginary left and right foot movements using beta rebound.
    Hashimoto Y; Ushiba J
    Clin Neurophysiol; 2013 Nov; 124(11):2153-60. PubMed ID: 23757379
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Learning to teleoperate an upper-limb assistive humanoid robot for bimanual daily-living tasks.
    Connan M; Sierotowicz M; Henze B; Porges O; Albu-Schäffer A; Roa MA; Castellini C
    Biomed Phys Eng Express; 2021 Dec; 8(1):. PubMed ID: 34757953
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.