These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 22256100)

  • 1. Generation of intervention strategy for a genetic regulatory network represented by a family of Markov Chains.
    Berlow N; Pal R
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7610-3. PubMed ID: 22256100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An experimental design framework for Markovian gene regulatory networks under stationary control policy.
    Dehghannasiri R; Shahrokh Esfahani M; Dougherty ER
    BMC Syst Biol; 2018 Dec; 12(Suppl 8):137. PubMed ID: 30577732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intervention in gene regulatory networks via greedy control policies based on long-run behavior.
    Qian X; Ivanov I; Ghaffari N; Dougherty ER
    BMC Syst Biol; 2009 Jun; 3():61. PubMed ID: 19527511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intervention in gene regulatory networks via phenotypically constrained control policies based on long-run behavior.
    Qian X; Dougherty ER
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(1):123-36. PubMed ID: 21788674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. State reduction for network intervention in probabilistic Boolean networks.
    Qian X; Ghaffari N; Ivanov I; Dougherty ER
    Bioinformatics; 2010 Dec; 26(24):3098-104. PubMed ID: 20956246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive intervention in probabilistic boolean networks.
    Layek R; Datta A; Pal R; Dougherty ER
    Bioinformatics; 2009 Aug; 25(16):2042-8. PubMed ID: 19505946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Employing decomposable partially observable Markov decision processes to control gene regulatory networks.
    Erdogdu U; Polat F; Alhajj R
    Artif Intell Med; 2017 Nov; 83():14-34. PubMed ID: 28733120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intervention in gene regulatory networks via a stationary mean-first-passage-time control policy.
    Vahedi G; Faryabi B; Chamberland JF; Datta A; Dougherty ER
    IEEE Trans Biomed Eng; 2008 Oct; 55(10):2319-31. PubMed ID: 18838357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generating probabilistic Boolean networks from a prescribed transition probability matrix.
    Ching WK; Chen X; Tsing NK
    IET Syst Biol; 2009 Nov; 3(6):453-64. PubMed ID: 19947771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fitting Boolean networks from steady state perturbation data.
    Almudevar A; McCall MN; McMurray H; Land H
    Stat Appl Genet Mol Biol; 2011 Oct; 10(1):. PubMed ID: 23089817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A CoD-based reduction algorithm for designing stationary control policies on Boolean networks.
    Ghaffari N; Ivanov I; Qian X; Dougherty ER
    Bioinformatics; 2010 Jun; 26(12):1556-63. PubMed ID: 20421196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A full bayesian approach for boolean genetic network inference.
    Han S; Wong RK; Lee TC; Shen L; Li SY; Fan X
    PLoS One; 2014; 9(12):e115806. PubMed ID: 25551820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inverse perturbation for optimal intervention in gene regulatory networks.
    Bouaynaya N; Shterenberg R; Schonfeld D
    Bioinformatics; 2011 Jan; 27(1):103-10. PubMed ID: 21062762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Markovian approach to the control of genetic regulatory networks.
    Chen PC; Chen JW
    Biosystems; 2007; 90(2):535-45. PubMed ID: 17320274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stochastic multiple-valued gene networks.
    Zhu P; Han J
    IEEE Trans Biomed Circuits Syst; 2014 Feb; 8(1):42-53. PubMed ID: 24681918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transient dynamics of reduced-order models of genetic regulatory networks.
    Pal R; Bhattacharya S
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(4):1230-44. PubMed ID: 22411891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated large-scale control of gene regulatory networks.
    Tan M; Alhajj R; Polat F
    IEEE Trans Syst Man Cybern B Cybern; 2010 Apr; 40(2):286-97. PubMed ID: 19858030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Markov State Models of gene regulatory networks.
    Chu BK; Tse MJ; Sato RR; Read EL
    BMC Syst Biol; 2017 Feb; 11(1):14. PubMed ID: 28166778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Markov-blanket-based model for gene regulatory network inference.
    Ram R; Chetty M
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(2):353-67. PubMed ID: 21233520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.