These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 22256164)

  • 1. A system for activity recognition using multi-sensor fusion.
    Gao L; Bourke AK; Nelson J
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7869-72. PubMed ID: 22256164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems.
    Gao L; Bourke AK; Nelson J
    Med Eng Phys; 2014 Jun; 36(6):779-85. PubMed ID: 24636448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A preliminary study of using wireless kinematic sensors to identify basic Activities of Daily Living.
    Dalton AF; Morgan F; Olaighin G
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2079-82. PubMed ID: 19163105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of Three State-of-the-Art Classifiers for Recognition of Activities of Daily Living from Smart Home Ambient Data.
    Nef T; Urwyler P; Büchler M; Tarnanas I; Stucki R; Cazzoli D; Müri R; Mosimann U
    Sensors (Basel); 2015 May; 15(5):11725-40. PubMed ID: 26007727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classification of Daily Activities for the Elderly Using Wearable Sensors.
    Liu J; Sohn J; Kim S
    J Healthc Eng; 2017; 2017():8934816. PubMed ID: 29317996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparing supervised learning techniques on the task of physical activity recognition.
    Dalton A; OLaighin G
    IEEE J Biomed Health Inform; 2013 Jan; 17(1):46-52. PubMed ID: 23070357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human daily activity recognition with sparse representation using wearable sensors.
    Zhang M; Sawchuk AA
    IEEE J Biomed Health Inform; 2013 May; 17(3):553-60. PubMed ID: 24592458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward real time detection of the basic living activity in home using a wearable sensor and smart home sensors.
    Bang S; Kim M; Song SK; Park SJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5200-3. PubMed ID: 19163889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recognition of Daily Gestures with Wearable Inertial Rings and Bracelets.
    Moschetti A; Fiorini L; Esposito D; Dario P; Cavallo F
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27556473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zero-Shot Human Activity Recognition Using Non-Visual Sensors.
    Al Machot F; R Elkobaisi M; Kyamakya K
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32033072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activity recognition using dynamic multiple sensor fusion in body sensor networks.
    Gao L; Bourke AK; Nelson J
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1077-80. PubMed ID: 23366082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of accelerometer orientation for activity recognition.
    Friedman A; Hajj Chehade N; Chien C; Pottie G
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2076-9. PubMed ID: 23366329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activity recognition with smartphone support.
    Guiry JJ; van de Ven P; Nelson J; Warmerdam L; Riper H
    Med Eng Phys; 2014 Jun; 36(6):670-5. PubMed ID: 24641812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using the Dempster-Shafer theory of evidence with a revised lattice structure for activity recognition.
    Liao J; Bi Y; Nugent C
    IEEE Trans Inf Technol Biomed; 2011 Jan; 15(1):74-82. PubMed ID: 21075728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recognizing upper limb movements with wrist worn inertial sensors using k-means clustering classification.
    Biswas D; Cranny A; Gupta N; Maharatna K; Achner J; Klemke J; Jöbges M; Ortmann S
    Hum Mov Sci; 2015 Apr; 40():59-76. PubMed ID: 25528632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The application of EMD in activity recognition based on a single triaxial accelerometer.
    Liao M; Guo Y; Qin Y; Wang Y
    Biomed Mater Eng; 2015; 26 Suppl 1():S1533-9. PubMed ID: 26405917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-sensor fusion for enhanced contextual awareness of everyday activities with ubiquitous devices.
    Guiry JJ; van de Ven P; Nelson J
    Sensors (Basel); 2014 Mar; 14(3):5687-701. PubMed ID: 24662406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic Recognition of Activities of Daily Living Utilizing Insole-Based and Wrist-Worn Wearable Sensors.
    Hegde N; Bries M; Swibas T; Melanson E; Sazonov E; Hegde N; Bries M; Swibas T; Melanson E; Sazonov E
    IEEE J Biomed Health Inform; 2018 Jul; 22(4):979-988. PubMed ID: 28783651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensors to detect the activities of daily living.
    Logan B; Healey J
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5362-5. PubMed ID: 17945896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human Activity Recognition by Combining a Small Number of Classifiers.
    Nazabal A; Garcia-Moreno P; Artes-Rodriguez A; Ghahramani Z
    IEEE J Biomed Health Inform; 2016 Sep; 20(5):1342-51. PubMed ID: 26208368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.